Finden Sie schnell Hochleistungskeramik für Ihr Unternehmen: 4 Ergebnisse

Hochleistungs-, Sonder- oder Ingenieurkeramiken

Hochleistungs-, Sonder- oder Ingenieurkeramiken

Mischkeramiken: aus Zirkonoxid und Aluminiumoxid, Siliziumnitrid und Bornitrid, Siliziumnitrid und Titannitrid Aluminiumoxid: von 60 – 99,9% Al2O3 Zirkonoxid: teil- und vollstabilisiert mit MgO, Y2O3, Y2O3 + Al2O3 sowie Ce2O3 und Ce2O3 + Al2O3 Siliziumkarbid: gesintert, infiltriert(reaktionsgesintert), heißgepresst, rekristallisiert und nitridgebunden Borkarbid: gesintert, heißgepresst und heißisostatisch gepresst Bornitrid: gesintert, heißgepresst und heißisostatisch gepresst, sowie als Pulver und Suspension Siliziumnitrid: gesintert, gasdruckgesintert, heißgepresst und heißisostatisch gepresst
Technische Kunststoffe

Technische Kunststoffe

Wir bieten Ihnen eine Vielzahl Technischer Kunststoffe als Platten- oder Stangenware an. Aber auch Dreh- und Frästeile, sowie Zuschnitte können wir nach Zeichnung oder Muster fertigen. Eigenschaften Thermische Eigenschaften Mechanische Eigenschaften Elektrische Eigenschaften Bezeichnung Dichte Wasser- aufnahme Schmelz-tempe- ratur Gebrauchs- temperatur obere untere Bruch- spannung Zug- festigkeit Streck-dehnung Bruch-dehnung Schlag- zähigkeit Kerbschlag-zähigkeit Kugel-druck- härte Härte Durch-schlags-festigkeit Durch-gangs-widerstand Oberflächen-widerstand elektrizitäts- zahl g/cm3 kJ/m2 kJ/m2 N/mm2 Shore Rockwell kV/mm Ohm.cm bei 100 Hz 1,24 +75°C -40°C >35 - 50 65 - 95 PVC-U 1,40 0,20 ohne Bruch 20-4
Ingenieurkeramiken in Ventilanwendungen

Ingenieurkeramiken in Ventilanwendungen

Regelung und Transport von Feststoffen und feststoffbeladenen Flüssigkeiten, hochkorrosiven Medien usw. sind heute mehr denn je mit Keramikteilen verbunden. Die exzellente Kombination von Eigenschaften, die in Armaturen von Bedeutung sind, z. B. mechanische Festigkeit, gute tribologische Eigenschaften, Härte, Verschleiß- und Korrosionsbeständigkeit, zum Teil auch Kavitationsbeständigkeit, vor allem aber die Möglichkeit Ingenieurkeramiken, insbesondere Siliziumnitrid und Zirkonoxid, für bestimmte Anwendungen zu optimieren, haben diese Materialien zu gefragten Konstruktionswerkstoffen für Anwendungen in der Kraftwerkstechnik und in Chemieanlagen gemacht. Über erste Einsätze in der Kohleverflüssigung und Rauchgasentschwefelung haben Ventilkomponenten aus unseren keramischen Werkstoffen z.B. die nachfolgenden Anwendungsgebiete erschlossen: Öl- und Gasexploration, Düngemittelherstellung, Margarineherstellung, Lebensmitteltechnik allgemein, Hochtemperaturanwendungen, Papier- und Zellstoffproduktion, Zuckerherstellung, chemische Industrie allgemein, Prüfstandanwendungen, Kohlestaubförderung, Müllverbrennung, Klärschlammbehandlung, Mineralienaufbereitung, Farb- und Pigmentherstellung, Petrochemie. Eingesetzt werden unsere Keramiken in Kugelhähnen. Drehkegelventilen, Regel- und Stellventilen, Drehschieber- und Rückschlagventilen.
Ingenieurkeramiken in der Wälzlageranwendung

Ingenieurkeramiken in der Wälzlageranwendung

Für Vollkeramiklager oder Hybridlager wird in der Regel heißisostatischgepresstes Siliziumnitrid (HIPSN), zumindest für die Wälzkörper verwendet. Nur für weniger belastete Lager kommt gasdruckgesintertes Siliziumnitrid (GPSN) in Frage. Für die Lagerringe wird neben Siliziumnitrid am häufigsten Zirkonoxid eingesetzt. Vollkeramiklager finden Anwendung bei hohen Temperaturen, extremer Korrosion, in der Lebensmittelproduktion, sozusagen dort, wo Standardstahl- oder Hybridlagern versagen bzw. eine zu kurze Lebensdauer erreichen. In seltenen Fällen, insbesondere dort wo Siliziumnitrid aus Korrosionsgründen versagt, z.B. in fluorhaltiger Atmosphäre, kommen unsere Zirkonoxidkugeln zum Einsatz. Aluminiumoxidkugeln finden in Lagern kaum Anwendung, mit Ausnahme in Kunstofflagern. Der Einsatz von Keramikkugeln erlaubt deutlich höhere Drehzahlen, ohne die Lager höher zu belasten. Durch das geringere Gewicht gegenüber Stahlkugeln und den größeren Elastizitätsmodul ergeben sich günstige kinematische Verhältnisse in der Kontaktzone. Daraus resultieren ein geringeres Reibungsmoment, geringere Erwärmung und geringere Verschleißraten. Bei Mangelschmierzuständen wirken sich diese Vorteile besonders deutlich aus.