Finden Sie schnell durchflussmeßgeräte für Ihr Unternehmen: 786 Ergebnisse

SITRANS FX300 Wirbeldurchflussmessgeräte mit integrierter Druck- und Temperaturkompensation

SITRANS FX300 Wirbeldurchflussmessgeräte mit integrierter Druck- und Temperaturkompensation

Zweileiter-Technologie mit HART-Kommunikation Integrierter Temperaturausgleich für gesättigten Wasserdampf als Standard-Leistungsmerkmal Integrierte Temperatur- und Druckkompensation für die direkte Messung von Masse, Normvolumendurchfluss und Energie Ein Gerät zum Messen von Druck, Temperatur und Durchfluss. Keine zusätzliche Installation von Druck- und Temperaturaufnehmern Maximale Prozesszuverlässigkeit dank ISP-Technologie (Intelligent Signal Processing) – stabile Messwerte, frei von externen Störungen Hohe Korrosions-, Druck- und Temperaturbeständigkeit durch die vollständig geschweißte Edelstahlkonstruktion Wartungsfreies Design Sofort einsatzbereit dank “Plug & Play”-Funktion Minimaler Druckabfall Kompakt- oder Getrenntausführung Messung Luftfördervolumens (FAD) eines Kompressors Die Wirbeldurchflussmessgeräte SITRANS F X mit integrierter Druck- und Temperaturkompensation sind die Komplettlösung für eine exakte Durchflussmessung von Dampf, Gasen und Flüssigkeiten.
Typ 8008 - Durchflussmesser für Gase

Typ 8008 - Durchflussmesser für Gase

Diese Durchflussmesser sind für besonders große Durchflussbereiche geeignet und arbeiten nach dem kalorimetrischen Messprinzip. Dabei wird ein beheizter Sensor durch das ihn umströmende Gas abgekühlt. Die strömungsabhängige Abkühlung wird als Messgröße genutzt, dabei ist der Grad der Abkühlung direkt abhängig von der vorbeiströmenden Luft- bzw. Gasmasse. Diese Art der Massendurchflussmessung ist unabhängig von Druck und Temperatur. Das Gerät kann der Überwachung von Druckluftleitungen dienen, ist aber darüber hinaus für andere Gase wie Stickstoff, Sauerstoff, Kohlendioxid, Erdgas, Methan, Argon oder Wasserstoff geeignet. Das Display kann um 180° gedreht werden. Der integrierte Mengenzähler lässt sich über die Tastatur zurücksetzen. Der Druckverlust über dem Gesamtgerät ist vernachlässigbar klein, die Messung erfolgt ohne bewegliche Teile. In Kombination mit einem elektromagnetisch betätigten Proportionalventil oder einem luftgesteuerten Prozessregelventil lassen sich vor Ort dezentrale Durchflussregelkreise bis DN50 realisieren. Typ 8008 ist in zwei Ausführungen erhältlich: - Standard - Heavy Duty (mit robustem Druckguss-Elektronikgehäuse). Bei der Heavy Duty- Ausführung ist der Sensor in Edelstahl gekapselt. - Thermische Massendurchflussmessung - Integrierte Eingangs- und Ausgangsleitungen zur Strömungsberuhigung - Rohrgrößen bis 2" - Integriertes Display - Standard- und Heavy Duty-Ausführung erhältlich
Typ 8007 - Durchflussmesser für Gase

Typ 8007 - Durchflussmesser für Gase

Die Durchflussmesser Typ 8007 sind für besonders große Durchflussbereiche geeignet (bis 12" bzw. DN 300) und arbeiten nach dem kalorimetrischen Messprinzip. Dabei wird ein beheizter Sensor durch das ihn umströmende Gas abgekühlt. Die strömungsabhängige Abkühlung wird als Messeffekt genutzt, dabei ist der Grad der Abkühlung direkt abhängig von der vorbeiströmenden Luft- bzw. Gasmasse. Diese Art der Massendurchflussmessung ist unabhängig von Druck und Temperatur. Das Gerät kann der Überwachung von Druckluftleitungen dienen, ist aber darüber hinaus für andere Gase, siehe technische Daten, geeignet. Typ 8007 ist in zwei Ausführungen erhältlich: - Standard - Heavy Duty (mit robustem Druckguss-Elektronikgehäuse). Bei der Heavy Duty- Ausführung ist der Sensor in Edelstahl gekapselt. - Tiefenskala für genauen Einbau in existierende Rohrleitungen - Von 1/2" bis 12" (DN 300) einsetzbar - Einbau unter Druck möglich - Integriertes Display - Standard- und Heavy Duty-Ausführung erhältlich
SIKA Einschub-Durchflussensoren VTH15

SIKA Einschub-Durchflussensoren VTH15

Einschub-Durchflusssensoren vom Typ VTH15 wurden speziell für den Einbau in Armaturen entwickelt, und zeichnen sich durch eine einfache und platzsparende Systemintegration aus. Typische Anwendungen für diese Durchflusssensoren kommen aus den Bereichen: • Trinkwasser-Zapferkennung • Wasserbehandlung • Leckageerkennung Der Einschub-Durchflusssensor besteht aus zwei Komponenten: einem Turbineneinschub und einem Hall-Effekt-Sensor. Dieser Aufbau ist der Schlüssel für den platzsparenden Einbau. Eine hochwertige Saphirlagerung sorgt für eine lange Lebensdauer des Messsystems und ermöglicht durch niedrige Anlaufgeschwindigkeiten die Messung kleiner Durchflussmengen ab einem Liter pro Minute. • Geringe Serienstreuung, feste Pulsrate • Hohe Messgenauigkeit • Geringer Verschleiß und extrem lange Lebensdauer durch hochwertige Lagerung • Kompakte Abmessungen • Erprobt in zahlreichen Großserienanwendungen Die in den Turbinen-Durchflusssensor einströmende Flüssigkeit wird durch die Leitbeschaufelung in Teilstrahle aufgeteilt. Diese treffen gleichmäßig aus verschiedenen Richtungen auf das Flügelrad und versetzen dieses in Drehung. Die Drehzahl des Flügelrades wird nun in ein elektrisches Pulssignal (Frequenz) umgesetzt: Das Flügelrad ist magnetbestückt, ein Hall-Effekt-Sensor detektiert die Drehbewegung. Es steht ein durchflussproportionales Frequenzsignal (Rechtecksignal) zur Verfügung. Durch die gleichmäßige Anströmung der Lagerung heben sich die Kräfte größtenteils auf und der Verschleiß ist auf ein Minimum reduziert. Die extrem harten Lagerwerkstoffe, Saphir und Hartmetall, garantieren zusätzlich eine außergewöhnliche Lebensdauer. Messbereich: 2...40 l/min Medientemperatur: Max. 85 °C Nennweite: DN 15
VD 500 - Durchflusssensor für nasse Druckluft

VD 500 - Durchflusssensor für nasse Druckluft

Reduzieren Sie Ihre Energiekosten und steigern Sie ihre Effizienz mit dem VD 500. Direkt zur Messung nach dem Kompressor geeignet. Überwachen Sie die Liefermenge Ihres Kompressors und erstellen eine FAD-Analyse. Einsatzbereich: - Messen direkt nach dem Kompressor - Messen bei hohen Temperaturen - Messen von schnellen Prozessen Vorteile des Differenzdrucksensors VD 500: - Bewährtes Messprinzip durch Messung des Differenzdruck (Staudruck) - Druck- und temperaturkompensiert, somit Ausgabe des Normvolumenstroms - Besonders geeignet für extrem hohe Durchflussraten - Extremschnelle Ansprechzeit von 100 ms - Schnelle und einfache Installation über einen ½" Kugelhahn - Keine bewegten Teile, somit wartungsarm - Verschwindend geringer Druckverlust, da verschwindend geringe Blockade des Durchmessers - Einsetzbar für feuchte und heiße Druckluft direkt nach dem Kompressor Typische Anwendungen: - Messung der Liefermenge von Kompressoren - Druckluftaudits - Effizienzmessung von Druckluftanlagen Installationsbedingungen: - Nach funktionierendem Wasserabscheider - In horizontalen Leitungen (empfohlen) oder in Steigleitungen
SIKA Turbinen-Durchflusssensoren Typ VT25

SIKA Turbinen-Durchflusssensoren Typ VT25

Der SIKA Turbinen-Durchflusssensor Typ VT25 wird für die Durchflussmessung und Dosierung in Wasser und Wassergemischen eingesetzt. Zum Einsatz kommt der Sensor in vielen Anwendungen wie u.a.: • Überwachung von Kühlkreisläufen im Maschinen- und Anlagenbau • Wasserbehandlung • Reinigungsprozessen • Dosierung Die in den Turbinen-Durchflusssensor einströmende Flüssigkeit wird durch die Leitbeschaufelung in Teilstrahle aufgeteilt. Diese treffen gleichmäßig aus verschiedenen Richtungen auf das Flügelrad und versetzen dieses in Drehung. Die Drehzahl des Flügelrades wird nun in ein elektrisches Pulssignal (Frequenz) umgesetzt: Das Flügelrad ist magnetbestückt, ein Hall-Effekt-Sensor detektiert die Drehbewegung. Es steht ein durchflussproportionales Frequenzsignal (Rechtecksignal) zur Verfügung. Die Geometrie von Leitbeschaufelung und Flügelrad ermöglicht es die sehr niedrigen Anlaufwerte zu realisieren.
SIKA Turbinen-Durchflusssensoren Typ VTH 40

SIKA Turbinen-Durchflusssensoren Typ VTH 40

Der SIKA Turbinen-Durchflusssensor Typ VTH40 wird für die Durchfluss-messung und Dosierung in Wasser und Wassergemischen eingesetzt. Der SIKA Turbinen-Durchflusssensor Typ VT40 wird für die Durchflussmessung und Dosierung in Wasser und Wassergemischen eingesetzt. Zum Einsatz kommt der Sensor in vielen Anwendungen wie u.a.: • Überwachung von Kühlkreisläufen im Maschinen- und Anlagenbau • Wasserbehandlung • Reinigungsprozessen • Dosierung Die in den Turbinen-Durchflusssensor einströmende Flüssigkeit wird durch die Leitbeschaufelung in Teilstrahle aufgeteilt. Diese treffen gleichmäßig aus verschiedenen Richtungen auf das Flügelrad und versetzen dieses in Drehung. Die Drehzahl des Flügelrades wird nun in ein elektrisches Pulssignal (Frequenz) umgesetzt: Das Flügelrad ist magnetbestückt, ein Hall-Effekt-Sensor detektiert die Drehbewegung. Es steht ein durchflussproportionales Frequenzsignal (Rechtecksignal) zur Verfügung. Die Geometrie von Leitbeschaufelung und Flügelrad ermöglicht es die sehr niedrigen Anlaufwerte zu realisieren. Werkstoff Rohrstück: Messing Messbereich: 0,4...25 m³/h (6,7...417 l/min) Messgenauigkeit: ±7 % vom Messwert im Bereich 0,4...3 m³/h, ±5 % vom Messwert im Bereich 3...25 m³/h
SIKA Turbinen-Durchflusssensoren VTY10

SIKA Turbinen-Durchflusssensoren VTY10

SIKA bietet technisch kompetente Beratung durch Kenntnis der Applikationen und Zusammenarbeit bereits in der Entwicklungsphase. Turbinen-Durchflusssensoren der Baureihe VTY wurden speziell für den Einsatz in Trinkwasser-Serienanwendungen entwickelt. Verwendung finden Sensoren der Baureihe VTY unter anderem zur Messung von Trinkwasser-Zapfmengen. Die in den Turbinen-Durchflusssensor einströmende Flüssigkeit wird durch die Lochscheibe in Teilstrahle aufgeteilt. Diese treffen gleichmäßig auf den Rotor und versetzen diesen in Drehung. Die Rotordrehzahl wird nun in ein elektrisches Pulssignal (Frequenz) umgesetzt: Der Rotor ist magnetbestückt, ein Hall-Effekt-Sensor detektiert die Drehbewegung. Es steht ein durchflussproportionales Frequenzsignal (Rechtecksignal) zur Verfügung. Durch die gleichmäßige Anströmung der Lagerung heben sich die Kräfte größtenteils auf und der Verschleiß ist auf ein Minimum reduziert. Die extrem harten Lagerwerkstoffe, Saphir und Hartmetall, garantieren zusätzlich eine außergewöhnliche Lebensdauer. • Geringer Verschleiß und extrem lange Lebensdauer durch hochwertige Lagerung • Praktisch keine Serienstreuung durch feste Pulsrate • Unempfindlich gegen Druckstöße • Erprobt in zahlreichen Großserienanwendungen • Hohe Messgenauigkeit, weitgehend unabhängig von der Einbaulage durch integrierte Strömungsgleichrichter SIKA bietet technisch kompetente Beratung durch Kenntnis der Applikationen und Zusammenarbeit bereits in der Entwicklungsphase. Flexible, kunden- und anwendungsorientierte Anpassung bestehender Standards sowie enge Kooperation in den Bereichen Qualitätssicherung und Produktverbesserung gewährleisten optimale Ergebnisse. Verschiedene Sensoren oder Funktionen können miteinander kombiniert werden. Messbereich: 1...30 l/min Medientemperatur: 0...90 °C (nicht gefrierend), kurzzeitig 95 °C Nenndruck: PN 16 Nennweite: DN 10
SIKA Turbinen-Durchflusssensoren VT15

SIKA Turbinen-Durchflusssensoren VT15

Der SIKA Turbinen-Durchflusssensor Typ VT15 wird für die Durchflussmessung und Dosierung in Wasser und Wassergemischen eingesetzt. Zum Einsatz kommt der Sensor in vielen Anwendungen wie u.a.: • Überwachung von Kühlkreisläufen im Maschinen- und Anlagenbau • Wasserbehandlung • Reinigungsprozessen • Dosierung Durch die kompakten Abmessungen und die hohe Messgenauigkeit, bietet er im Vergleich zu konventionellen Wasserzählern überzeugende Vorteile: • Ein Temperatursensor kann im Gehäuse integriert werden und spart somit zusätzliche Einbaukosten. • Die maximale Medientemperatur von 120 °C bietet ausreichende Sicherheit für alle Betriebsbedingungen. Die in den Turbinen-Durchflusssensor einströmende Flüssigkeit wird durch die Leitbeschaufelung in Teilstrahle aufgeteilt. Diese treffen gleichmäßig aus verschiedenen Richtungen auf das Flügelrad und versetzen dieses in Drehung. Die Drehzahl des Flügelrades wird nun in ein elektrisches Pulssignal (Frequenz) umgesetzt: Das Flügelrad ist mit Edelstahlstiften (VTH, VTM, VTP) oder magnetbestückt (VTI). Ein Hall-Effekt-Sensor (VTH, VTM, VTP) oder ein induktiver Näherungsschalter (VTI) detektiert die Drehbewegung. Es steht ein durchflussproportionales Frequenzsignal (Rechtecksignal) zur Verfügung. Durch die gleichmäßige Anströmung der Lagerung heben sich die Kräfte größtenteils auf und der Verschleiß ist auf ein Minimum reduziert. Die extrem harten Lagerwerkstoffe, Saphir und Hartmetall, garantieren zusätzlich eine außergewöhnliche Lebensdauer. Werkstoff Rohrstück: Messing oder Kunststoff; Messing oder Edelstahl Messbereich: 2...40 l/min Medientemperatur: Max. 150 °C Nenndruck: PN 10
SIKA Turbinen-Durchflusssensoren VTR

SIKA Turbinen-Durchflusssensoren VTR

Turbinen-Durchflusssensoren der Baureihe VTR werden zur Messung unterschiedlicher, niederviskoser Medien, wie z.B. Wasser oder Kühlmittel, eingesetzt. Die SIKA Turbinen-Durchflusssensoren der Baureihe VTR aus Edelstahl werden aufgrund der robusten Bauweise und hohen Genauigkeit in zahlenreichen Bereichen eingesetzt: • Industrielle Kühlkreisläufe • Petrochemie / Chemische Industrie • Wasserbehandlung / Wasseraufbereitung • Kunststofftechnik • Hydraulik Der VTR besteht aus der Messturbine und dem extern angebrachten Messaufnehmer. Die Messflüssigkeit strömt in die Messturbine und setzt den Rotor in Bewegung. Die Drehzahl ist direkt proportional zum Durchfluss. Die sich bewegenden Rotorblätter werden von dem Aufnehmer detektiert und in ein durchflussproportionales Pulssignal umgesetzt. • Robustes Edelstahlgehäuse, auch für schwierige Anwendungen • Weite Messbereiche • Hohe Messgenauigkeit, unabhängig von der Einbaulage • Hochwertige Hartmetall-Lagerung mit geringem Verschleiß und langer Lebensdauer • Variabel Einsetzbar dank unterschiedlicher Messaufnehmer sowie Anschluss- und Nennweitenvielfalt • Werksprüfschein, 5 Punkte Kalibrierung Messbereich: 0,11...1,1 m3/h bis 6,8...68 m3/h Medientemperatur: Max. 150 °C Nennweite: DN 10...DN 50
SIKA Magnetisch-induktiver Durchflusssensoren (induQ VMM)

SIKA Magnetisch-induktiver Durchflusssensoren (induQ VMM)

Die magnetisch-induktiven Durchflusssensoren induQ® der Baureihe VMM sind sehr präzise Messgeräte für elektrisch leitende Flüssigkeiten. Durch ihre robuste Auslegung sind sie auch für rauhere Umgebungsbedingungen geeignet. Der magnetisch-induktive Durchflusssensor Typ VMM15 von SIKA kommt unter anderem in folgenden Bereichen zum Einsatz: • Wasser und Abwasser • Bergbau, Zement und Mineralstoffe • Zellstoff- und Papierindustrie • Stahlindustrie • Energiewirtschaft- und Versorgungsbetriebe • Agrarwirtschaft Die intelligenten Durchflusssensoren der Baureihe induQ® arbeiten nach dem Induktionsprinzip: Das Messrohr befindet sich in einem Magnetfeld (B). Fließt ein elektrisch leitendes Medium mit dem zu bestimmenden Durchfluss (Q) durch das Messrohr und damit rechtwinklig zum Magnetfeld, wird eine Spannung (U) in das Medium induziert, die proportional zur mittleren Strömungsgeschwindigkeit ist und durch zwei Elektroden abgegriffen wird. Für ein durchflussproportionales Ausgangssignal stehen Ihnen zwei Varianten zur Verfügung: • Frequenzausgangssignal • Analog- und Frequenzausgangssignal Die Pulsrate ist je nach Typ werkseitig konfigurierbar. Nennweite: DN 15; DN 25; DN 32; DN 40; DN 50; DN 65; DN 80; DN 100; DN 125; DN 150; DN 200 Messbereich: 0...10 m/s 0...6,3 m³/h; 0...10 m/s 0...17,7 m³/h; 0...10 m/s 0...29 m³/h; 0...10 m/s 0...45,2 m³/h; 0...10 m/s 0...70,7 m³/h; 0...10 m/s 0...119,5 m³/h; 0...10 m/s 0...181 m³/h; 0...10 m/s 0...282,7 m³/h; 0...10 m/s 0...441,8 m³/h; 0...10 m/s 0...636,2; Ausgangssignal: Frequenzausgang; Analogausgang; Alarmausgang
SIKA Magnetisch-induktive Durchflusssensoren (induQ VMZ.2)

SIKA Magnetisch-induktive Durchflusssensoren (induQ VMZ.2)

Die Sensoren der Baureihe induQ® VMZ.2 ermöglichen eine Durchfluss- / Volumenstrommessung oder Dosierung von elektrisch leitenden Flüssigkeiten ohne bewegte Teile. Der VMZ ist ein magnetisch-induktiver Durchflusssensor für elektrisch leitende Flüssigkeiten und wurde speziell für OEM-Anwendungen entwickelt. Durch den Einsatz kostenoptimierter Kunststoffbauteile ist der VMZ äußerst günstig, er ist in kompakter Leichtbauweise ausgeführt und steht für sechs Durchflussbereiche zur Verfügung. Nennweite: DN 3; DN 6; DN 8; DN 15; DN 20; DN 25 Messbereich: 0,1...2 l/min; 0,25...5 l/min; 1...20 l/min; 2,5...50 l/min; 5...200 l/min; 12,5...250 l/min Ausgangssignal: Analogausgang 4...20 mA, 0,5...10 V und Frequenzausgang
testo 6446 Druckluftzähler für große Rohrdurchmesser

testo 6446 Druckluftzähler für große Rohrdurchmesser

ideales Instrument für Druckluftmessungen in Rohren mit großem Durchmesser, Messung hilft Ihnen bei der Leckagen-Detektion, einer verbrauchsgerechten Zuteilung und schließlich bei der Kostensenkung Messumformer mit wählbaren Signalausgängen: Analogausgang, Impulsausgang, 2 Schaltausgänge Integrierte Summenfunktion (Totalisator) zur Ermittlung des Gesamtverbrauchs Flexible Montage mit Messblock, Rohrschelle oder als Messarmatur Einfache Bedienung mit diversen Optionen (Signalausgänge, physikalische Einheit, etc.) Kontrollieren Sie Ihren Druckluftverbrauch: Der Druckluftzähler testo 6446 ist Ihr ideales Instrument für Druckluftmessungen in Rohren mit großem Durchmesser (DN65-250)*. Die Messung hilft Ihnen bei der Leckagen-Detektion, einer verbrauchsgerechten Zuteilung und schließlich bei der Kostensenkung Produktbeschreibung In Industrieunternehmen ist Druckluft ein wichtiger Energieträger, der aber auch hohe Kosten verursachen kann. Präzise Mess- und Regeltechnik schafft Transparenz beim Druckluftverbrauch und hilft Ihnen, Energie einzusparen, Kosten zu senken und ein gezieltes Umweltmanagement umzusetzen (z.B. nach ISO 50.001 oder ISO 14.001). Der Druckluftzähler testo 6446 ermöglicht Ihnen genaue Druckluft-Verbrauchsmessungen, Verbrauchs- und Leckageüberwachung sowie Durchflussmessungen in Ihrem Druckluftsystem. Ebenso lässt sich mit dem Druckluftzähler eine Spitzenlast-Analyse durchführen, um festzustellen, ob die Kapazität Ihrer Druckluft-Erzeugung ausreicht. Insgesamt helfen Ihnen diese Maßnahmen, Einsparpotential zu finden oder unnötige Investitionskosten zu vermeiden. Die technischen Vorteile des Druckluftzählers testo 6446 im Überblick Der Druckluftzähler testo 6446 ist gleichzeitig ein Messumformer, der die gemessene Größe in ein elektrisches Einheitssignal umwandelt. Dadurch lässt sich der Messumformer in Anlagen (z.B. Druckluftsysteme) integrieren und ist somit ein wichtiges Instrument in der Mess- und Regeltechnik. Außerdem bietet der Druckluftzähler testo 6446 folgende Vorteile: Größte Flexibilität durch verschiedene Signalausgaben: Analogausgang, Impulsausgang, 2 Schaltausgänge. So sind Sie für jeden Anwendungsfall gerüstet, ob Verbrauchsmessung, Verbrauchs- oder Leckageüberwachung oder auch Durchflussmessung Integrierte Summenfunktion: Dank praktischem Totalisator sind zur Ermittlung des Gesamtverbrauchs keine weiteren Auswerteeinheiten notwendig Flexible Montage: mit Messblock, Rohrschelle oder als Messarmatur Höchste Genauigkeit: Der Druckluftzähler ist in verschiedenen Größen erhältlich (vor allem größere Rohrdurchmesser werden abgedeckt: DN65-250)*. Dadurch, dass bei jeder Größe der Innendurchmesser genau festgelegt ist, wird ein Abgleich auf Norm-Volumenstrom ermöglicht. Somit erzielen Sie eine hohe Messgenauigkeit – besonders im Vergleich zu handelsüblichen Einstechsonden, die anhand von gemessener Strömung und angegebenem Rohrdurchmesser auf den Volumenstrom schließen und somit von größerer Fehleranfälligkeit betroffen sind Einfache Bedienung mit großer Flexibilität: Parametrierung von Signalausgängen, Wechsel von physikalischen Einheiten, Signalverzögerung, Signaldämpfung möglich Messung nach kalorimetrischem Prinzip: kein Druckverlust bei der Messung Weitere Vorteile: keine Temperaturkompensation notwendig, schnelle Ansprechzeit, robuster Sensor, optimierte Genauigkeit dank integrierten Ein- und Auslaufstrecken *Hinweis: Bei Montage mit Messarmatur (optional) können auch folgende Rohrdurchmesser abgedeckt werden: DN15, DN20, DN25, DN32, DN40, DN50.
testo 6447 Druckluftzähler mit Wechselarmatur für große Rohrdurchmesser

testo 6447 Druckluftzähler mit Wechselarmatur für große Rohrdurchmesser

größte Flexibilität durch verschiedene Signalausgaben: Analogausgang, Impulsausgang, 2 Schaltausgänge, Verbrauchsmessung, Verbrauchs- oder Leckageüberwachung oder auch Durchflussmessung Messumformer mit wählbaren Signalausgängen: Analogausgang, Impulsausgang, 2 Schaltausgänge Wechselarmatur: Sonde lässt sich unter Druck entnehmen (und dadurch flexibel an mehreren Messstellen einsetzen) Flexible Montage mit Messblock, Rohrschelle oder als Messarmatur Kontrollieren Sie Ihren Druckluftverbrauch: Der Druckluftzähler testo 6447 ist Ihr ideales Instrument für Druckluftmessungen in Rohren mit großem Durchmesser (DN65-250). Die Messung hilft Ihnen bei der Leckagen-Detektion, einer verbrauchsgerechten Zuteilung und schließlich bei der Kostensenkung. Dank Wechselarmatur lässt sich die Sonde auch unter Druck entnehmen. Produktbeschreibung In Industrieunternehmen ist Druckluft ein wichtiger Energieträger, der aber auch hohe Kosten verursachen kann. Präzise Mess- und Regeltechnik schafft Transparenz beim Druckluftverbrauch und hilft Ihnen, Energie einzusparen, Kosten zu senken und ein gezieltes Umweltmanagement umzusetzen (z.B. nach ISO 50.001 oder ISO 14.001). Der Druckluftzähler testo 6447 ermöglicht Ihnen genaue Druckluft-Verbrauchsmessungen, Verbrauchs- und Leckageüberwachung sowie Durchflussmessungen in Ihrem Druckluftsystem. Ebenso lässt sich mit dem Druckluftzähler eine Spitzenlast-Analyse durchführen, um festzustellen, ob die Kapazität Ihrer Druckluft-Erzeugung ausreicht. Insgesamt helfen Ihnen diese Maßnahmen, Einsparpotential zu finden oder unnötige Investitionskosten zu vermeiden. Die technischen Vorteile des Druckluftzählers testo 6447 im Überblick Der Druckluftzähler testo 6447 ist gleichzeitig ein Messumformer, der die gemessene Größe in ein elektrisches Einheitssignal umwandelt. Dadurch lässt sich der Messumformer in Anlagen (z.B. Druckluftsysteme) integrieren und ist somit ein wichtiges Instrument in der Mess- und Regeltechnik. Außerdem bietet der Druckluftzähler testo 6447 folgende Vorteile: Größte Flexibilität durch verschiedene Signalausgaben: Analogausgang, Impulsausgang, 2 Schaltausgänge. So sind Sie für jeden Anwendungsfall gerüstet, ob Verbrauchsmessung, Verbrauchs- oder Leckageüberwachung oder auch Durchflussmessung Sondenentnahme unter Druck: Die überzeugende Wechselarmatur-Lösung macht es möglich Integrierte Summenfunktion: Dank praktischem Totalisator sind zur Ermittlung des Gesamtverbrauchs keine weiteren Auswerteeinheiten notwendig Flexible Montage: mit Messblock, Rohrschelle oder als Messarmatur Höchste Genauigkeit: Der Druckluftzähler ist in verschiedenen Größen erhältlich (vor allem größere Rohrdurchmesser werden abgedeckt: DN65-250). Dadurch, dass bei jeder Größe der Innendurchmesser genau festgelegt ist, wird ein Abgleich auf Norm-Volumenstrom ermöglicht. Somit erzielen Sie eine hohe Messgenauigkeit – besonders im Vergleich zu handelsüblichen Einstechsonden, die anhand von gemessener Strömung und angegebenem Rohrdurchmesser auf den Volumenstrom schließen und somit von größerer Fehleranfälligkeit betroffen sind Einfache Bedienung mit großer Flexibilität: Parametrierung von Signalausgängen, Wechsel von physikalischen Einheiten, Signalverzögerung, Signaldämpfung möglich Messung nach kalorimetrischem Prinzip: kein Druckverlust bei der Messung Weitere Vorteile: keine Temperaturkompensation notwendig, schnelle Ansprechzeit, robuster Sensor, optimierte Genauigkeit dank integrierten Ein- und Auslaufstrecken
testo 6448 Druckluftzähler mit Stabsonde

testo 6448 Druckluftzähler mit Stabsonde

professionelle Druckluftverbrauchsmessung, Verbrauchs- und Leckageüberwachung, Durchflussmessungen, Stabsonde zur Ermittlung, Überwachung, Kontrolle und Protokollierung des Druckluftverbrauchs Messumformer mit wählbaren Signalausgängen: Analogausgang, Impulsausgang, 2 Schaltausgänge Sichere und schnelle Montage/Demontage der Stabsonde dank Rückschlagschutz und Kugelhahn Montage des gesamten Messumformers unter Druck möglich Einfache Bedienung mit diversen Optionen (Signalausgänge, physikalische Einheit, etc.) Druckluftverbrauchsmessung auf professionellem Niveau: Der Druckluftzähler testo 6448 überzeugt nicht nur durch genaue Druckluftmessungen, sondern auch durch die Möglichkeit zur einfachen Entnahme der Stabsonde. Die Nutzung des Druckluftzählers bietet sich an, wenn Sie Leckagen finden möchten, eine verbrauchsgerechte Zuteilung anstreben und damit auf eine Kostensenkung zielen. Produktbeschreibung In Industrieunternehmen dient Druckluft als wichtiger Energieträger, der aber auch große Kosten verursachen kann. Präzise Mess- und Regeltechnik gewährt Ihnen Transparenz im Druckluftverbrauch. Lassen Sie sich durch genaue Druckluftmessungen dabei helfen, Energie und Kosten einzusparen und ein geregeltes Umweltmanagement zu realisieren (z.B. nach ISO 50.001 oder ISO 14.001). Der Druckluftzähler testo 6448 bietet sich für Druckluft-Verbrauchsmessungen, Verbrauchs- und Leckageüberwachung sowie Durchflussmessungen an. Ebenso dient er zur Spitzenlast-Analyse, anhand der Sie abschätzen können, ob die Kapazität in Ihrer Druckluft-Erzeugung ausreichend ist. All diese Maßnahmen helfen Ihnen, Potential zur Kosten- und Energiesenkung zu entdecken und unnötige Investitionsausgaben einzusparen. Der Druckluftzählers testo 6448 überzeugt mit folgenden technischen Vorteilen Der Druckluftzähler testo 6448 ist gleichzeitig ein Messumformer, der die gemessene Größe in ein elektrisches Einheitssignal umwandelt. Dadurch lässt sich der Messumformer in Anlagen (z.B. Druckluftsysteme) integrieren und ist somit ein wichtiges Instrument in der Mess- und Regeltechnik. Außerdem bietet der Druckluftzähler testo 6448 folgende Vorteile: Größte Flexibilität durch verschiedene Signalausgaben: Analogausgang, Impulsausgang, 2 Schaltausgänge. Dadurch nutzbar für jeden Anwendungsfall: Verbrauchsmessung, Verbrauchs- oder Leckageüberwachung oder auch Durchflussmessung Schnelle und sichere Montage/Demontage der Sonde dank Rückschlagschutz und Kugelhahn: kein Verletzungsrisiko durch Rückschlag, kein Entweichen von Druckluft, Sonde flexibel an mehreren Messstellen einsetzbar Montage des gesamten Messumformers unter Druck möglich: Der Druckluftzähler kann dank Anbohrschelle (optional) im laufenden Betrieb eingebaut werden Integrierte Summenfunktion: Dank Totalisator lässt sich der Gesamtverbrauch ohne zusätzliche Auswerteeinheiten ermitteln Einfache Bedienung mit großer Flexibilität: Parametrierung von Signalausgängen, Wechsel von physikalischen Einheiten, Signalverzögerung, Signaldämpfung möglich Messung nach kalorimetrischem Prinzip: kein Druckverlust bei der Messung Weitere Vorteile: keine Temperaturkompensation notwendig, schnelle Ansprechzeit, robuster Sensor, für verschiedene Rohrdurchmesser erhältlich (DN40-250)
DBS Druckwächter / Druckbegrenzer

DBS Druckwächter / Druckbegrenzer

Die Druckbegrenzer in Sicherheitstechnik bieten gegenüber den normalen Druckschaltern in vielen Punkten ein höheres Maß an Sicherheit und sind deshalb besonders für Anlagen der chemischen Verfahrenstechnik und der Wärmetechnik geeig-net, bei denen besonders auf Sicherheit bei der Drucküberwachung Wert gelegt werden muss. Die Druckschalter sind auch in Ex-Bereichen (Zone 0, 1, 2 und 20, 21, 22) einsetzbar und benötigen in jedem Fall einen Trennschaltverstärker. Der Trennschaltverstärker ist auch für die Über-wachung der Leitungen auf Kurzschluss und Leitungsbruch zuständig und bietet deshalb – auch in Nicht-Ex-Bereichen – einen zusätzlichen Sicherheitsvorteil. Bei Ex-Anwendungen muss der Trennschaltverstärker außerhalb der Ex- Zone installiert werden. Die Leitungen zwischen Trennschaltverstärker und dem Druckschalter werden auf Kurzschluss und Leitungsbruch überwacht. SIL 2 gemäß IEC 61508-2 Technische Daten Mehr Sicherheit · bei verfahrenstechnischen und chemischen Anlagen · bei Gas-und Flüssiggasanlagen Grundausstattung: – „Besondere Bauart“ nach VdTÜV-Merkblatt „Druck 100“ – Leitungsbruch- und Kurzschlussüber wachung zwischen Druckschalter und Trennschalt- verstärker – Für Ex-Bereiche (Zone 0, 1 u. 2 bzw. 20, 21 und 22) geeignet (Zündschutzart Ex-i) – Schutzart IP 65 – Kunststoffbeschichtete Gehäuse (Chemie-ausführung) Optionen: – Begrenzerausführung mit interner Verriegelung Gerätespezifische Merkmale: – Selbstüberwachende Sensoren – Zwangsöffnende Mikroschalter – Vergoldete Kontakte – TÜV-, DVGW-Bauteilprüfungen Sicherheitstechnische Anforderungen an Druckbegrenzer Druckbegrenzer „besonderer Bauart“ (DBS) müssen zusätzliche Anforderungen an die erweiterte Sicherheit erfüllen, d. h. ein Bruch oder eine Undichtigkeit im mechanischen Teil des Messwerks muss zu einer Abschaltung nach der sicheren Seite führen. Der Druckbegrenzer muss so reagieren, als ob der Anlagendruck den maximalen Grenzwert bereits überschritten hätte. In die sicherheitstechnische Betrachtung des Druckbegrenzers muss auch der Steuerstromkreis, der über den Druckbegrenzer führt, einbezogen werden, denn Kurzschlüsse in den Zuleitungen oder andere Fehler im Steuerstrom-kreis können zu gefährlichen Zuständen führen. Schaltelement mit Zwangsöffnung und vergoldeten Kontakten Der Mikroschalter ist mit einer Zwangsöffnung ausgestattet. Im Gegensatz zu der bei den meisten Mikroschaltern üblichen Übertragung der Stößelkraft über eine Sprungfeder, ist der neu entwickelte Mikroschalter mit einem zusätzlichen Hebel versehen, der die Hubbewegungen des Druckbalgs formschlüssig auf den Kontakthebel überträgt. Bei Bruch der Sprungfeder wird der Kontaktbügel direkt bewegt. Leitungsbruch- und Kurzschlussüberwachung im Steuerstromkreis Der Widerstand in Reihe zum Schaltkontakt begrenzt den Strom bei geschlossenem Schalter auf einen definierten Wert. Bei Kurzschluss im Steuerstromkreis im Bereich zwischen Trennschalt-verstärker und Reihenwiderstand steigt der Strom über den vorgegebenen Grenzwert an, das Relais des Trennschaltverstärkers fällt ab, der Ausgangsstromkreis wird unterbrochen und damit der sichere Zustand erreicht. Bei Leitungsbruch wird der Stromfluss unterbrochen, das Relais fällt nach der sicheren Seite ab und unterbricht den Ausgangsstromkreis (Sicherheitskette). Der Trennschalt-verstärker ist darüber hinaus so gebaut, dass bei Fehlern in der Elektronik (Leiterbahnunterbrechung, Bauteildefekt usw.) und bei den daraus resultierenden Folgefehlern der sichere Abschaltzustand eingenommen wird. Diese Eigenschaften des Trennschaltverstärkers für Sicherheitstechnik, einschließ-lich Leitungsbruch- und Kurzschlussüberwachung, entsprechend den Vorschriften der DIN/VDE 0660, Teil 209. Anschlussplan Bei Drucküberwachung in Ex-Bereichen ist der Trennschaltverstärker außerhalb der Ex-Zone anzu-ordnen. Über den Druckbegrenzer wird ein eigensicherer Steuerstromkreis (Ex-i) geführt. Diese Anordnung ist geeignet für Zone 0, 1 und 2 bzw. 20, 21 und 22.
FD – Maximaldruckbegrenzer

FD – Maximaldruckbegrenzer

Die Druckbegrenzer der Reihe FD sind nach den speziellen Richtlinien der Flüssiggastechnik gebaut. Alle mit dem Medium in Verbindung stehenden Teile bestehen aus Edelstahl 1.4104 und 1.4571. Der Drucksensor ist „selbstüberwachend“ ausgeführt, d. h. bei Bruch des Messbalgs schaltet der Druckbegrenzer nach der sicheren Seite ab. Maximaldruckbegrenzer für Flüssiggasanlagen. Sie werden in eigensicheren Steuerstromkreisen betrieben (Ex-Schutzart Ex-i). Durch Verwendung eines Trennschaltverstärkers wird der Steuerstromkreis zusätzlich auf Unterbrechung und Kurzschluss überwacht. Druckart Überdruck, relativ Druckanschluss Außengewinde G1/2″ Elektrischer Anschluss Klemmenanschluss M16x1,5 Schutzart IP65 Material des Schaltgehäuses Stabiles Gehäuse aus seewasserbeständigem Aluminium-Druckguss GD Al Si 12 Mediumstemp. -25 … 60 oC Max. Mediumstemp. Höhere Mediumstemperaturen sind möglich, wenn durch geeignete Maßnahmen (z. B. Wassersackrohr) obige Grenzwerte am Schaltgerät sichergesellt sind (siehe Zubehör für Druckschalter / Transmitter) Umgebungstemp. -25 … 60 oC Hinweis z. Umgebungstemperatur Bei Umgebungstemperaturen unter 0 oC ist dafür zu sorgen, dass im Sensor und im Schaltgerät kein Kondenswasser entstehen kann Registrierungen • ID 0000033127 nach VdTUEV Merkblatt Druck 100, Ausgabe 07.2006 und DIN EN 12952-11, Ausgabe 09.2007 und DIN EN 12953-9, Ausgabe 09.2007 • 01 202 931-B-11-0002 nach Richtlinie 97/23/EC • SIL2 nach IEC 61508-2 Einstellb. Druckbereich 3 … 16 bar Max. Druck 40 bar Mediumberührte Werkstoffe 1.4104 + 1.4571 Zusatz-Beschreibung Produkte dürfen nur mit Trennschaltverstärker betrieben werden. FESTE HYSTERESE VERRIEGELUNG/RÜCKSTELLUNG ARTIKEL-NR. BAR 0.5 Max.druck/elektrisch FD16-326 2.5 Max. druck/Taste FD16-327 Zubehör BESCHREIBUNG Wassersackrohr für höhere Temperaturen, Werkstoff St.35.8-I (weiteres Zubehör siehe Zubehör für Druckschalter / Transmitter)
Alicat Massendurchflussregler für Gase

Alicat Massendurchflussregler für Gase

Um einen stabilen Durchfluss zu gewährleisten, müssen Gas-Massendurchflussregler schnell und präzise arbeiten. Die von Alicat entwickelten Regler erreichen ihre Sollwerte schneller als vergleichbare Produkte, was es ermöglicht, Schwankungen im Leitungsdruck zu unterdrücken, noch bevor sie sich auf den nachgeschalteten Prozess auswirken. Mit kundenspezifischen Ventiloptionen und werkseitiger PID-Abstimmung ist sichergestellt, dass der Massendurchflussregler in jeder Anwendung effektiv funktioniert. Laminare, differenzdruckbasierte Massendurchflussregler für höchste Leistung: 0,6 % Messgenauigkeit bei den meisten Durchflussmessgeräten 10 ms Reaktionszeit Keine Aufwärmphase Vier Prozessvariablen Eingebauter Bildschirm Industrielle Protokolle Druckkompensation Temperaturkompensation Große dynamische Durchflussbereiche
DGM Druckwächter für Brenngase

DGM Druckwächter für Brenngase

DVGW-geprüft n. DIN EN 1854. Die Gasdruckwächter sind für alle Gase nach DVGW-Arbeitsblatt G 260 und für Luft geeignet. Die Gasdruckwächter sind für alle Gase nach DVGW-Arbeitsblatt G260 und für Luft geeignet. Druckart Überdruck, relativ Druckanschluss Innengewinde G1/4″, Außengewinde G1/2″ Elektrischer Anschluss Stecker nach DIN EN 175301 Schutzart IP54 Material des Schaltgehäuses Stabiles Gehäuse aus seewasserbeständigem Aluminium-Druckguss GD Al Si 12 Mediumstemp. -25 … 60 oC Max. Mediumstemp. Kurzzeitig einwirkende Temperaturen bis 85 oC sind zulässig. Höhere Mediumstemperaturen sind möglich, wenn durch geeignete Maßnahmen (z. B. Wassersackrohr) obige Grenzwerte am Schaltgerät sichergestellt sind (siehe Zubehör für Druckschalter / Transmitter) Umgebungstemp. -25 … 60 oC Hinweis z. Umgebungstemperatur Bei Umgebungstemperaturen unter 0 oC ist dafür zu sorgen, dass im Sensor und im Schaltgerät kein Kondenswasser entstehen kann Schaltfunktion 8 A bei 250 V AC, 5 A bei 250 V AC induktiv, 8 A bei 24 V DC, 0,3 A bei 250 V DC Zusatzfunktionen Fügen Sie unten aufgeführte Ziffern an die ausgewählte Bestell-Nr. an, um die beschriebene Zusatzfunktion zu ordern: • -213: vergoldete Kontakte, einpolig umschaltend (u.a. nicht mit einstellbarer Schaltdifferenz lieferbar. Schaltleistung: max. 24 VDC, 100 mA, min. 5 V DC, 2mA • -301: Klemmenanschluss-Gehäuse, IP65 • -513: Vergoldete Kontakte, einpolig umschaltend, Schaltdifferenz fest, IP65, Schaltleistung: max. 24 Vdc, 100 mA, min. 5 Vdc, 2 mA,geeigneten Trennschaltverstärker vorsehen, Zündschutzart: Ex-i • -574: Öffnerkontakt mit Widerstandskombination, für Minimaldrucküberwachung, vergoldete Kontakte. Gehäuse mit Kunststoff beschichtet (Chemieausführung), IP65, Zündschutzart: Ex-i • -575: Öffnerkontakt mit Widerstandskombination, für Minimaldrucküberwachung, vergoldete Konakte. Gehäuse mit Kunststoff beschichtet (Chemieausführung), IP65, Zündschutzart: Ex-i • -576: Öffnerkontakt mit Widerstandskombination, für Maximaldrucküberwachung, vergoldete Kontakte. Gehäuse mit Kunststoff beschichtet (Chemieausführung), IP65, Zündschutzart: Ex-i • -577: Öffnerkontakt mit Widerstandskombination, für Maximaldrucküberwachung, vergoldete Konakte. Gehäuse mit Kunststoff beschichtet (Chemieausführung), IP65, Zündschutzart: Ex-i Registrierungen • CE-0085 AQ 1088 nach EU/2016/426 A III B (09.03.2016) und DIN EN 1854 (01.10.2010) • SIL2 nach IEC 61508-2 EINSTELLB. DRUCKBEREICH FESTE HYSTERESE MAX. DRUCK MEDIUMBERÜHRTE WERKSTOFFE ARTIKEL-NR. BAR MBAR BAR 0.015 … 0.06 6 0.8 Kupfer + Messing DGM306A 0.02 … 0.1 7 0.8 Kupfer + Messing DGM310A 0.04 … 0.25 10 0.8 Kupfer + Messing DGM325A 0.1 … 0.6 25 2 Kupfer + Messing DGM06A 0.2 … 1.6 40 3 Kupfer + Messing DGM1A 0.015 … 0.06 8 5 1.4104 + 1.4571 DGM506 0.04 … 0.16 12 5 1.4104 + 1.4571 DGM516 0.1 … 0.25 20 5 1.4104 + 1.4571 DGM525 Zubehör BESCHREIBUNG Wassersackrohr für höhere Temperaturen, Werkstoff St.35.8-I (weiteres Zubehör siehe Zubehör für Druckschalter / Tarnsmitter)
DGM – Druckwächter für Brenngase

DGM – Druckwächter für Brenngase

DVGW-geprüft n. DIN EN 1854. Die Gasdruckwächter sind für alle Gase nach DVGW-Arbeitsblatt G 260 und für Luft geeignet. Die Gasdruckwächter sind für alle Gase nach DVGW-Arbeitsblatt G260 und für Luft geeignet. Druckart Überdruck, relativ Druckanschluss Innengewinde G1/4″, Außengewinde G1/2″ Elektrischer Anschluss Stecker nach DIN EN 175301 Schutzart IP54 Material des Schaltgehäuses Stabiles Gehäuse aus seewasserbeständigem Aluminium-Druckguss GD Al Si 12 Mediumstemp. -25 … 60 oC Max. Mediumstemp. Kurzzeitig einwirkende Temperaturen bis 85 oC sind zulässig. Höhere Mediumstemperaturen sind möglich, wenn durch geeignete Maßnahmen (z. B. Wassersackrohr) obige Grenzwerte am Schaltgerät sichergestellt sind (siehe Zubehör für Druckschalter / Transmitter) Umgebungstemp. -25 … 60 oC Hinweis z. Umgebungstemperatur Bei Umgebungstemperaturen unter 0 oC ist dafür zu sorgen, dass im Sensor und im Schaltgerät kein Kondenswasser entstehen kann Schaltfunktion 8 A bei 250 V AC, 5 A bei 250 V AC induktiv, 8 A bei 24 V DC, 0,3 A bei 250 V DC Zusatzfunktionen Fügen Sie unten aufgeführte Ziffern an die ausgewählte Bestell-Nr. an, um die beschriebene Zusatzfunktion zu ordern: • -213: vergoldete Kontakte, einpolig umschaltend (u.a. nicht mit einstellbarer Schaltdifferenz lieferbar. Schaltleistung: max. 24 VDC, 100 mA, min. 5 V DC, 2mA • -301: Klemmenanschluss-Gehäuse, IP65 • -513: Vergoldete Kontakte, einpolig umschaltend, Schaltdifferenz fest, IP65, Schaltleistung: max. 24 Vdc, 100 mA, min. 5 Vdc, 2 mA,geeigneten Trennschaltverstärker vorsehen, Zündschutzart: Ex-i • -574: Öffnerkontakt mit Widerstandskombination, für Minimaldrucküberwachung, vergoldete Kontakte. Gehäuse mit Kunststoff beschichtet (Chemieausführung), IP65, Zündschutzart: Ex-i • -575: Öffnerkontakt mit Widerstandskombination, für Minimaldrucküberwachung, vergoldete Konakte. Gehäuse mit Kunststoff beschichtet (Chemieausführung), IP65, Zündschutzart: Ex-i • -576: Öffnerkontakt mit Widerstandskombination, für Maximaldrucküberwachung, vergoldete Kontakte. Gehäuse mit Kunststoff beschichtet (Chemieausführung), IP65, Zündschutzart: Ex-i • -577: Öffnerkontakt mit Widerstandskombination, für Maximaldrucküberwachung, vergoldete Konakte. Gehäuse mit Kunststoff beschichtet (Chemieausführung), IP65, Zündschutzart: Ex-i Registrierungen • CE-0085 AQ 1088 nach EU/2016/426 A III B (09.03.2016) und DIN EN 1854 (01.10.2010) • SIL2 nach IEC 61508-2 EINSTELLB. DRUCKBEREICH FESTE HYSTERESE MAX. DRUCK MEDIUMBERÜHRTE WERKSTOFFE ARTIKEL-NR. BAR MBAR BAR 0.015 … 0.06 6 0.8 Kupfer + Messing DGM306A 0.02 … 0.1 7 0.8 Kupfer + Messing DGM310A 0.04 … 0.25 10 0.8 Kupfer + Messing DGM325A 0.1 … 0.6 25 2 Kupfer + Messing DGM06A 0.2 … 1.6 40 3 Kupfer + Messing DGM1A 0.015 … 0.06 8 5 1.4104 + 1.4571 DGM506 0.04 … 0.16 12 5 1.4104 + 1.4571 DGM516 0.1 … 0.25 20 5 1.4104 + 1.4571 DGM525 Zubehör BESCHREIBUNG Wassersackrohr für höhere Temperaturen, Werkstoff St.35.8-I (weiteres Zubehör siehe Zubehör für Druckschalter / Tarnsmitter)
Ex-DGM Druckwächter (Ex-d) für Brenngase

Ex-DGM Druckwächter (Ex-d) für Brenngase

DVGW- geprüft nach DIN EN1854. Die Gasdruckwächter sind für alle Gase nach DVGW- Arbeitsblatt G 260 und für Luft geeignet. Zur Überwachung des Überdrucks in explosionsgefährdeten Bereichen mit Brenngasen. Explosionsschutzart: Ex II 2G Ex d e IIC T6 Gb, Ex II 1/2D Ex ta/tb IIIC T80 oC Da/Db Druckart Überdruck, relativ Druckanschluss Innengewinde G1/4″, Außengewinde G1/2″ Elektrischer Anschluss Klemmenanschluss M16x1,5 Schutzart IP65 Material des Schaltgehäuses Stabiles Gehäuse aus seewasserbeständigem Aluminium-Druckguss GD Al Si 12 Mediumberührte Werkstoffe 1.4104 + 1.4571 Mediumstemp. -25 … 60 oC Max. Mediumstemp. Kurzzeitig einwirkende höhere Temperaturen sind möglich, wenn durch geeignete Maßnahmen (z. B. Wassersackrohr) obige Grenzwerte am Schaltgerät sichergestellt sind (siehe Zubehör für Druckschalter / Transmitter Umgebungstemp. -20 … 60 oC Hinweis z. Umgebungstemperatur Bei Umgebungstemperaturen unter 0 oC ist dafür zu sorgen, dass im Sensor und im Schaltgerät kein Kondenswasser entstehen kann Schaltfunktion 3 A bei 250 V AC, 2 A bei 250 V AC induktiv, 3 A bei 24 V DC, 0,03 A bei 250 V DC Registrierungen • CE-0085 AQ 1088 nach EU/2009/142/EG (30.11.2009) und DIN EN 1854 (01.07.2006) • IBExU12ATEX1040 nach ATEX 2014/34/EU • SIL2 gemäß IEC 61508-2 Max. Druck 5 bar EINSTELLB. DRUCKBEREICH FESTE HYSTERESE ARTIKEL-NR. MBAR MBAR 15 … 60 10 EX-DGM506 40 … 160 12 EX-DGM516 100 … 250 20 EX-DGM525 Zubehör BESCHREIBUNG Wassersackrohr für höhere Temperaturen, Werkstoff St.35.8-I (weiteres Zubehör siehe Zubehör für Druckschalter / Transmitter)
Ex-DWR Drucküberwachung (Ex-d) für Warmwasser, Dampf, Gas, Öl

Ex-DWR Drucküberwachung (Ex-d) für Warmwasser, Dampf, Gas, Öl

Besonders als Druckwächter oder Druckbegrenzer für Brenngase (DGVW-Arbeitsblatt G260) und flüssige Brennstoffe (z.B. Heizöl) sowie für Dampfanlagen nach TRBS und Heißwasser Anlagen nach DIN EN12828, für Anlagen nach DIN EN12952-11 und DIN EN12953-9. FEMA Unterdruckschalter erfassen die Druckdifferenz gegenüber dem Umgebungsdruck. Alle Daten bezüglich der Druckschaltbereiche und damit auch die Skaleneinteilung an der Schaltvorrichtung müssen verstanden werden als die Druckdifferenz zwischen dem relevanten Atmosphärendruck und dem eingestellte Schaltdruck. Der “Null”-Punkt auf der Skala des Geräts entspricht dem jeweiligen Atmosphärendruck. Ex-Schutz Grad: Ex II 2G Ex d e IIC T6 Gb, Ex II 1/2D Ex ta/tb IIIC T80 oC Da/Db Explosionsgeschützte Schalter und andere elektrische funktionale Einheiten, die fähig sind, explosive Mischgase zu entzünden, sind in einem Gehäuse gekapselt, das den explosiven Druck einer internen Explosion übersteht. Außerdem verhindert das spezielle Design die Übertragung der Explosion an die umgebende Atmosphäre. Druckart Überdruck, relativ Druckanschluss Innengewinde G1/4″, Außengewinde G1/2″ Elektrischer Anschluss Klemmenanschluss M16x1,5 Schutzart IP65 Material des Schaltgehäuses Stabiles Gehäuse aus seewasserbeständigem Aluminium-Druckguss GD Al Si 12 Mediumberührte Werkstoffe 1.4104 + 1.4571 Mediumstemp. -25 … 60 oC Max. Mediumstemp. 60oC. Höhere Mediumstemperaturen sind möglich, wenn durch geeignete Maßnahmen (z. B. Wassersackrohr) obige Grenzwerte am Schaltgerät sichergestellt sind (siehe Zubehör für Druckschalter / Transmitter) Umgebungstemp. -20 … 60 oC Hinweis z. Umgebungstemperatur Bei Umgebungstemperaturen unter 0 oC ist dafür zu sorgen, dass im Sensor und im Schaltgerät kein Kondenswasser entstehen kann Schaltfunktion 3 A bei 250 V AC, 2 A bei 250 V AC induktiv, 3 A bei 24 V DC, 0,03 A bei 250 V DC Registrierungen • TV-DWFS (SDBFS).17-281 nach VdTUEV Merkblatt Druck 100, Ausgabe 03.2017, DIN EN 12952-11:2007 und DIN EN 12953-9:2007 • ID 0000035004 nach DIN EN 764-7:2002 und DIN EN 13611:2008 • CE-0085CL0343 nach DIN EN 1854, Ausgabe 07.2006 • 01 202 931-B-11-0003 nach Richtlinie 97/23 EC • IBExU12ATEX1040 nach ATEX 2014/34/EU • IECEx IBE 14.0077 • SIL2 nach IEC 61508-02 EINSTELLB. DRUCKBEREICH FESTE HYSTERESE MAX. DRUCK ARTIKEL-NR. BAR BAR BAR 0.1 … 0.6 0.04 6 EX-DWR06 0.2 … 1.6 0.06 6 EX-DWR1 0.2 … 2.5 0.1 16 EX-DWR3 0.5 … 6 0.2 16 EX-DWR6 0.5 … 6 0.25 25 EX-DWR625 3 … 16 0.5 25 EX-DWR16 4 … 25 1 63 EX-DWR25 8 … 40 1.3 63 EX-DWR40 Zubehör BESCHREIBUNG Wassersackrohr für höhere Temperaturen, Werkstoff St.35.8-I (weiteres Zubehör siehe Zubehör für Druckschalter / Transmitter)
Typ 8750 - Fluidmengenregler, Durchfluss-Regelungssystem für Gase

Typ 8750 - Fluidmengenregler, Durchfluss-Regelungssystem für Gase

Der Fluid Mengen Regler Typ 8750 ist ein Komplettsystem zur Messung und Regelung des Volumenstroms von Gasen nach dem Differenz-Druck-Prinzip. Das robuste und zuverlässige System besteht aus einem ELEMENT Regelventil Typ 2301 mit dem kompakten Prozessregler Typ 8693, sowie zwei Drucktransmitter des Typs 8323. Diese werden als fertig montiertes System inklusive speziellem Gehäuse geliefert. Der Bürkert Fluid Mengen Regler benötigt keinen separaten Durchflussmesser. Gemessen wird der Druckabfall über das Regelventil, als „Messblende“. Aus der gemessenen Druckdifferenz kann der nominale Volumenstrom des Mediums für eine gegebene Dichte und Temperatur berechnet werden. Hierfür wird die Durchflusskennlinie des Regelventils im Prozessregler hinterlegt. Der gemessene Volumenstrom kann dann über die Öffnung des Regelventils variiert werden. Damit ist die gesamte erforderliche Regelungstechnik in dem kompakten System integriert. Der Fluid Mengen Regler überzeugt insbesondere durch seine hohe Reproduzierbarkeit und großen Messbereich. Vorteilhaft ist, dass das Regelventil gleichzeitig auch als Blende genutzt wird. Dadurch ist der Druckverlust deutlich geringer als bei konventionellen Lösungen mit separater Blende. Die verstellbare Blende des Regelventils ermöglicht einen deutlich größeren Messbereich als konventionelle Blendenmessung. Geringe Montagekosten und einfache Inbetriebnahme sind weitere Vorteile dieses Komplettsystems. - Zuverlässiges, robustes System - Reduzierte Schnittstellen - Blende und Stellglied in einem - Einfache Bedienung - Stand-alone Betrieb möglich
Druckschalter, elektronisch

Druckschalter, elektronisch

Einsatzgebiete: Machinenbau, Hyraulische und pneumatische Anwendungen, Spritzgussindustrie, Fettschmierung OEM-Anwendungen, Hydraulik und Pneumatik, Schwerindustrie und Anlagenbau, KFZ-Industrie Druckschalter, elektronisch: Vierfach Druckschalter
Ex-DCM / Ex-DNM Druckschalter (Ex-d) für nicht aggressive Flüssigkeiten und Gase

Ex-DCM / Ex-DNM Druckschalter (Ex-d) für nicht aggressive Flüssigkeiten und Gase

Dieser Universaldruckschalter ist sowohl im allgemeinen Maschinenbau und der Druckmaschinenindustrie einsetzbar, als auch in der Pneumatik und Hydraulik. Druckschalter für Ex-Anwendungen. Ex-Schutzart: Ex II 2G Ex d e IIC T6 Gb und Ex II 1/2D Ex ta/tb IIIC T80 oC Da/Db. Zur Überdruck-Messung von nicht aggressiven flüssigen und gasförmigen Medien. Zur Überdruck-Messung von nicht aggressiven flüssigen und gasförmigen Medien. Druckart Überdruck, relativ Druckanschluss Innengewinde G1/4″, Außengewinde G1/2″ Elektrischer Anschluss Klemmenanschluss M16x1,5 Schutzart IP65 Material des Schaltgehäuses Stabiles Gehäuse aus seewasserbeständigem Aluminium-Druckguss GD Al Si 12 Mediumstemp. -20 … 60 oC Max. Mediumstemp. Kurzzeitig einwirkende höhere Temperaturen sind möglich, wenn durch geeignete Maßnahmen (z. B. Wassersackrohr) obige Grenzwerte am Schaltgerät sichergestellt sind (siehe Zubehör für Druckschalter / Transmitter Umgebungstemp. -20 … 60 oC Hinweis z. Umgebungstemperatur Bei Umgebungstemperaturen unter 0 oC ist dafür zu sorgen, dass im Sensor und im Schaltgerät kein Kondenswasser entstehen kann Schaltfunktion 3 A bei 250 V AC, 2 A bei 250 V AC induktiv, 3 A bei 24 V DC, 0,03 A bei 250 V DC Registrierungen • SIL2 nach IEC 61508-2 • IBExU12ATEX1040 nach ATEX 2014/34/EU • IECEx IBE 14.0077 EINSTELLB. DRUCKBEREICH FESTE HYSTERESE MAX. DRUCK MEDIUMBERÜHRTE WERKSTOFFE ARTIKEL-NR. BAR BAR BAR 0.001 … 0.016 0.002 1 Perbunan + 1.4301 EX-DCM4016 0.004 … 0.025 0.002 1 Perbunan + 1.4301 EX-DCM4025 1 … 10 0.3 16 1.4104 + 1.4571 EX-DNM10 16 … 63 1 130 1.4104 + 1.4571 EX-DNM63 Zubehör BESCHREIBUNG Wassersackrohr für höhere Temperaturen, Werkstoff St.35.8-I (weiteres Zubehör siehe Zubehör für Druckschalter / Transmitter)
SIKA Kalorimetrische Strömungswächter, Baureihe VE

SIKA Kalorimetrische Strömungswächter, Baureihe VE

Mit dem elektronischen Strömungswächter VE lassen sich flüssige Medien auf Unterschreiten einer vorgegebenen Durchflussmenge überwachen. Der VE arbeitet nach dem kalorimetrischen Prinzip und es können, da er ohne bewegliche Teile auskommt, auch festkörperbelastete Durchflüsse kontrolliert werden. Er zeichnet sich durch einen robusten Aufbau, die unkomplizierte Bedienung und seine hohe Zuverlässigkeit aus. Sie erhalten mit dem VE eine sichere und preisgünstige Möglichkeit, Ihre Anlagen und Maschinen vor kostenintensiven Schäden zu bewahren. Schalttransmitter: Integriert; Separat Werkstoff Elektronikgehäuse: PBT Ausgangssignal: PNP, open collector Prozessanschluss: G½ Außengewinde
Erntemengen- und Rohwareerfassung

Erntemengen- und Rohwareerfassung

Wiege- und Erfassungssystem mit Etikettendrucker, Scanner, PC-Software. Wir beraten Sie gerne ausführlich!
Wägebrücken 027, 028 - für Tischwaagen

Wägebrücken 027, 028 - für Tischwaagen

EG-eichfähig Klasse III Ideale Tischwaage für feinste Teile. Besonders als Referenzwaage geeignet. Auch zur Montage an Tisch- oder Bodenstativen. Pulverbeschichtet.
Feinwaage mit Erschütterungsschutz 400g / 0,01g Münzwaage Präzisionswaage

Feinwaage mit Erschütterungsschutz 400g / 0,01g Münzwaage Präzisionswaage

Präzisionswaage bis 400g Sehr stabile Digitalwaage von MyWeigh Ideal für den Transport, dank Gummischutzhülle. - Wägebereich: Bis 400g mit 0,01g Teilung. - Edelstahl Wiegefläche - Beleuchtetes Display ( damit lässt sich auch in dunkleren Räumen problemlos wiegen) - Tara Funktion: Hiermit ziehen Sie Behältergewichte einfach ab. Z.B. das Gewicht von kleineren Behältern oder Schüsseln. - Ideal für Unterwegs. Die Waage ist sehr gut gegen Erschütterungen geschützt, dank ihrer Gummihülle. - Der abnehmbare Deckel lässt sich als Waagschale nutzen. - Automatische Abschaltung. Schont die Batterien. - Batterien ( 2x AAA ) inklusive Technische Details : Wägebereich: Wiegt bis 400g Ablesbarkeit ( Wiegeschritte ): 0,01g Teilung Abmessung Gerät: 13 cm x 6,5 cm x 2 cm Abmessung der Wiegefläche: 8 cm x 6 cm Gewichtseinheiten wahlweise: g, oz, ozt, dwt, gn, ct
INDUQ-IVMM50

INDUQ-IVMM50

Magnetisch-Induktive Durchflusssensor Nennweite DN 50 Messbereich: Strömungsgeschwindigkeit [m/s]: 0,25...10 Volumenstrom [m³/h]: 1,8...70,7 Prozessanschluss : Flanschanschluss in Anlehnung an EN 1092-1 oder ANSI B16.5 Messgenauigkeit: v = 1...10 m/s : ±0,5 % vom Messwert v < 1 m/s : ±0,4 % vom Messwert ±1 mm/s Messmedium : Wasser und andere leitfähige Flüssigkeiten Min. Leitfähigkeit des Messmediums : 50 μS/cm