Finden Sie schnell jbl pcb für Ihr Unternehmen: 42 Ergebnisse

Flexible Leiterplatten

Flexible Leiterplatten

• Layer:1-8L • Technology Highlights:Gold finger(1-2µm);impedance controlled • Materials: PI, PET, RA Non flow PP • Final Thickness: 0.075-0.65mm • Copper Thickness: 18um-105um • Minimum track & spacing: 0.075mm / 0.075mm • Max. Size:250x1100mm • Surface Treatments: ENEPIG, OSP, Gold fingers, Imm. Tin, Imm. Ni/Au • Minimum Mechanical Drill: 0.2mm • Minimum Laser Drill:0.1mm Spezialtechnologie auf Anfrage. Um Ihnen eine umfassendere Beratung zu ermöglichen, steht Ihnen unser Team von BERATRONIC gerne zur Verfügung. Wir freuen uns auf Ihre Nachricht.
High Density Interconnect (HDI) Leiterplatten

High Density Interconnect (HDI) Leiterplatten

• Layer: 4-24 Layers • Technology Highlights: any Layer can be connected, Multilayer with finer lines/space, till 5 sequential laminations (N+5) • Materials: FR4, high TG FR4, low CTE, Rogers • Final Thickness: 0,4 – 3,2mm • Copper Thickness: 18μm – 70µm • Minimum track & spacing: 0.0762 mm / 0.0762 mm • Max. Size: 550x400mm • Surface Treatments: ENIG, HAL Leadfree, HASL, OSP, Imm. Tin, Imm. Ni/Au, Imm. Silver, Gold fingers • Minimum Mechanical Drill: 0.15mm, advanced 0,1mm • Minimum Laser Drill: 0.10mm standard, advanced 0.075mm Um Ihnen eine umfassendere Beratung zu ermöglichen, steht Ihnen unser Team von BERATRONIC gerne zur Verfügung. Wir freuen uns auf Ihre Nachricht
Starrflex-Leiterplatten

Starrflex-Leiterplatten

Starrflex-Leiterplatten bestehen aus einer Kombination von starren und flexiblen Leiterplatten, welche unlösbar miteinander verbunden sind. Bei richtiger Anwendung ermöglichen Starrflex-Leiterplatten optimale Lösungen für schwierige, begrenzte Raumverhältnisse. Diese Technologie bietet die Möglichkeit einer sicheren Verbindung der Gerätebestandteile durch Polungs- und Kontaktierungssicherheit sowie Einsparung von Steck- und Leitungskomponenten. Weitere Vorteile von Starrflex-Leiterplatten sind die dynamische und mechanische Belastbarkeit und die dadurch gewonnene 3-dimensionale Designfreiheit, eine einfachere Installation, Raumersparnis und die Erhaltung der einheitlichen elektrischen Charakteristik. Der Einsatz von Starrflex-Leiterplatten kann den Gesamtpreis des Produktes senken. Durch einen standardisierten Herstellungsprozess nach IPC-Richtlinien, kann ein zuverlässiges und gleichzeitig preisgünstiges Produkt garantiert werden, welches zudem UL-zertifiziert ist (UL94 / V-0); ein Aufbringen des UL-Logos ist ohne Aufpreis möglich.
SMD Batterieladekontakt UEBK-12970

SMD Batterieladekontakt UEBK-12970

Batteriekontakt / Battery Probe - Minimum Raster: 2,54 mm; Empfohlener Hub: 1,60 mm; Federkraft: 4 N bei Empfohlenem Hub Nennstrom: 1 A; Kontaktwiderstand: 100 mΩ; Anschluss: SMD Batteriekontakt / Battery Probe - UEBK-12970 Material (Material) Kolben: Messing, vergoldet (Plunger: Brass, gold plated) Stifthülse: Messing, vergoldet (Barrel: Brass, gold plated) Feder: Edelstahl (Spring: Stainless Steel) Elektrische Spezifikation (Electrical specification) Nennstrom: 1 A (Rated current: 1 A) Kontaktwiderstand: 100 mΩ (Contact resistance: 100 mΩ) Mechanische Spezifikation (Mechanical specification) Minimum Raster: 2,54 mm (Minimum Centers: 2,54 mm) Max. Hub: 1,8 mm (Max. travel: 1,8 mm) Empfohlener Hub: 1,6 mm (Recommended travel: 1,6 mm) Federkraft: 4 N bei Empfohlenem Hub (Spring Force: 4 N @ recommened travel) Anschluss: SMD (Connection: SMD) Datenblatt-Link: https://www.uweelectronic.de/images/ue-products/kontakttechnologie/Batteriekontakte/UEBK-12970/UEBK-12970.pdf Art.Nr.:: UEBK-12970 Nennstrom:: 1 A Kontaktwiderstand:: 100 mΩ Empfohlener Hub:: 1,60 mm Anschluss:: SMD Federkraft:: 4 N bei Empfohlenem Hub Minimum Raster:: 2,54 mm
SMD Batterieladekontakt UEBK-12890

SMD Batterieladekontakt UEBK-12890

Batteriekontakt / Battery Probe - Minimum Raster: 2,54 mm; Empfohlener Hub: 2,6 mm; Federkraft: 1,2 N bei Empfohlenem Hub; Nennstrom: 1 A; Kontaktwiderstand: 100 mΩ; Anschluss: SMD Batteriekontakt / Battery Probe - UEBK-12890 Material (Material) Kolben: Messing, vergoldet (Plunger: Brass, gold plated) Stifthülse: Messing, vergoldet (Barrel: Brass, gold plated) Feder: Edelstahl (Spring: Stainless Steel) Elektrische Spezifikation (Electrical specification) Nennstrom: 1 A (Rated current: 1 A) Kontaktwiderstand: 100 mΩ (Contact resistance: 100mΩ) Mechanische Spezifikation (Mechanical specification) Minimum Raster: 2,54 mm (Minimum Centers: 2,54 mm) Max. Hub: 2,8 mm (Max. travel: 2,8 mm) Empfohlener Hub: 2,6 mm (Recommended travel: 2,6 mm) Federkraft: 1,2 N bei Empfohlenem Hub (Spring Force: 1,2 N @ recommended travel) Anschluss: SMD (Connection: SMD) Datenblatt-Link: http://www.uweelectronic.de/images/ue-products/kontakttechnologie/Batteriekontakte/UEBK-12890/UEBK-12890.pdf Art.Nr.:: UEBK-12890 Nennstrom:: 1 A Kontaktwiderstand: 100 mΩ Empfohlener Hub:: 2,60 mm Anschluss:: SMD Federkraft:: 1,2 N bei Empfohlenem Hub Minimum Raster:: 2,54 mm
SMD Batterieladekontakt UEBK-12120

SMD Batterieladekontakt UEBK-12120

Batteriekontakt / Battery Probe - Minimum Raster: 2,54 mm; Empfohlener Hub: 1,0 mm; Federkraft: 1,1 N bei Empfohlenem Hub; Nennstrom: 12 A; Kontaktwiderstand: < 10 mΩ; Anschluss: SMD Batteriekontakt / Battery Probe - UEBK-12120 Material (Material) Kolben: Kupfer-Beryllium, vergoldet (Plunger: Copper-Beryllium, gold plated) Stifthülse: Messing, vergoldet (Barrel: Brass, gold plated) Feder: Edelstahl (Spring: Stainless Steel) Elektrische Spezifikation (Electrical specification) Nennstrom: 12 A (Rated current: 12 A) Kontaktwiderstand: < 10 mΩ (Contact resistance: < 10 mΩ) Mechanische Spezifikation (Mechanical specification) Minimum Raster: 2,54 mm (Minimum Centers: 2,54 mm) Max. Hub: 1,0 mm (Max. travel: 1,0 mm) Empfohlener Hub: 1,0 mm (Recommended travel: 1,0 mm) Federkraft: 1,1 N bei Empfohlenem Hub (Spring Force: 1,1 N @ recommended travel) Anschluss: SMD (Connection: SMD) Datenblatt-Link: http://www.uweelectronic.de/images/ue-products/kontakttechnologie/Batteriekontakte/UEBK-12120/UEBK-12120.pdf Art.Nr.:: UEBK-12120 Minimum Raster:: 2,54 mm Nennstrom:: 12 A Kontaktwiderstand:: < 10 mΩ Empfohlener Hub:: 1,00 mm Federkraft:: 1,0 N bei Empfohlenem Hub Anschluss:: SMD
SMD Batterieladekontakt UEBK-12622

SMD Batterieladekontakt UEBK-12622

Batteriekontakt / Battery Probe - Minimum Raster: 2,54 mm; Empfohlener Hub: 1,00 mm; Federkraft: 0,88 N Empfohlenem Hub; Nennstrom: 10 A; Kontaktwiderstand: < 10 mΩ; Anschluss: SMD Batteriekontakt / Battery Probe - UEBK-12622 Material (Material) Kolben: Messing, vergoldet (Plunger: Brass, gold plated) Stifthülse: Messing, vergoldet (Barrel: Brass, gold plated) Feder: Edelstahl (Spring: Stainless Steel) Elektrische Spezifikation (Electrical specification) Nennstrom: 10 A (Rated current: 10 A) Kontaktwiderstand: < 10 mΩ (Contact resistance: < 10 mΩ) Mechanische Spezifikation (Mechanical specification) Minimum Raster: 2,54 mm (Minimum Centers: 2,54 mm) Max. Hub: 1,0 mm (Max. travel: 1,0 mm) Empfohlener Hub: 1,0 mm (Recommended travel: 1,0 mm) Federkraft: 0,88 N bei Empfohlenem Hub (Spring Force: 0,88 N @ recommended travel) Anschluss: SMD (Connection: SMD) Datenblatt-Link: http://www.uweelectronic.de/images/ue-products/kontakttechnologie/Batteriekontakte/UEBK-12622/UEBK-12622.pdf Art.Nr.:: UEBK-12622 Nennstrom:: 10 A Kontaktwiderstand:: < 10 mΩ Empfohlener Hub:: 1,00 mm Anschluss:: SMD Federkraft:: 0,88 N bei Empfohlenem Hub Minimum Raster:: 2,54 mm
Oberflächen Leiterplatten

Oberflächen Leiterplatten

Die CCTC Corporation hat alle weltweit benötigten lötfähigen Oberflächen im Produktionsprogramm. Eine Besonderheit ist die Mischoberfläche OSP und ENIG auf einer Seite. Sie ist nach dem aktuellen Stand der Technik für zu lötende BGA's, die sicherste Oberfläche mit dem besten Lötyield für BGA's. Die BGA-Lötpunkte sind dabei in OSP ausgeführt.
Hochfrequenz-Leiterplatten

Hochfrequenz-Leiterplatten

Leiterplatten, bei denen hohe Übergangsgeschwindigkeiten bei niedrigen Übertragungsverlusten, benötigt werden, setzt man an Stelle von Glasfaserepoxyharz Hochfrequenz – Basismaterial ein. Diese Basismaterialien haben sehr gute dielektrische Eigenschaften, eine niedrige Dielektrizitätszahl und niedrigen Verlustfaktor. Hervorzuheben ist die gute Wärmebeständigkeit. Sie ist nahezu temperaturunabhängig. Das Herstellen der Hochfrequenzleiterplatten erfordert neben dem speziellen Basismaterial ein besonderes Design. Wichtige Parameter für die Auswahl des Basismaterials sind : • Dielektrizitätskonstante • Verlustfaktor • Materialstärke • Kupferkaschierung PTFE Substrate ( Teflon ) sind die meistverwendeten Basismaterialien. Sie gibt es in vielen Variationen. Zum Erstellen dieser Leiterplatten werden für die Lochreinigung eigene Verfahren benötigt.
Flexible Leiterplatten

Flexible Leiterplatten

Fertigung von flexiblen Leiterplatten aus Polyаmid. Die damit aufgebauten Flexschaltungen können platzsparend durch Falten in engsten Strukturen eingesetzt werden. Eigenschaften: •lange Delaminationsbeständigkeit •geringe z-Achsenausdehnung •hoher Glasfließtemperaturwert (Tg) •chemische Widerstandsfestigkeit •hohe Temperaturbeständigkeit Der Tg gibt hierbei einen oberen Grenzwert vor, bei dem der Verbund anfängt zu fließen. Leiterplatten mit hoher Tg sind besonders beliebt in der LED-Industrie, da die Wärmeableitung von LED höher als diese von Standardbauteile ist. Bei Arbeitstemperatur höher als 170/180°C, sowie auch 200°C, 280°C, oder sogar höher, sollten Keramikleiterplatten verwendet werden.
Multilayer Leiterplatten

Multilayer Leiterplatten

Werden für Leiterplatten höhere Packungsdichten benötigt, verwendet man Multilayer. Bei diesem Leiterplattentyp werden mehrere einzelne Schaltungen aufeinandergelegt und zu einer Leiterplatte verpresst. Glasharzfolien dienen als Zwischenlagen ( Prepreg ). Die elektrische Verbindung der Lagen untereinander erhält man mit Hilfe von durchkontaktierten Lochungen. Das Erstellen einer Multilayer – Leiterplatte gliedert sich in drei Gruppen. • Erstellen der inneren Leiterschichten • Laminiervorgang. (Hoher Druck und Temperatur unter Vakuum) • Durchverkupferung und Erstellen des äußeren Leiterbildes. Abweichungen von dieser Technik sind Leiterplatten mit „Sacklöchern „- (Blind Vias) Hierbei werden zusätzliche Verbindungen von Außenlagen zu Innenlagen durchgeführt, bevor die ganze Leiterplatte durchverkupfert wird. Weitere höhere Packungsdichte erhält man mit durchverkupferten Verbindungen innerhalb der inneren Lagen. (Buriedvias).
Leiterplatten mit Kupferdicke bis zum 400 µm

Leiterplatten mit Kupferdicke bis zum 400 µm

Diese Technologie bietet die Möglichkeit, komplexe Schalter im begrenzten Raum für die hohen Stromstärken zu realisieren.