Finden Sie schnell spritzgusswerkzeug 3d druck für Ihr Unternehmen: 352 Ergebnisse

Entwicklung  & Prototypenherstellung

Entwicklung & Prototypenherstellung

Eine Idee von dem, was wir tun. Werkzeugmacher, Prototypenbauer, Produktentwickler: So oder so kann man uns bezeichnen. Und doch bieten wir Ihnen mehr als die Summe dieser Tätigkeiten: einen Beratungspartner, der Ihre Anforderungen in Form bringt. Unser Selbstverständnis ist das eines Sparringspartners, mit dem Sie weltweit gemeinsam Lösungen finden können. Ob es um die Entwicklung eines innovativen Produktes geht, um die kompetente Begleitung während des Produktionsprozesses oder um geeignete Lösungen für die Weiterverarbeitung und Montage. Wir sind mit unserer Erfahrung und Unabhängigkeit an Ihrer Seite, um die Realisierung von Ideen wirtschaftlich voranzutreiben. Unsere Arbeit beginnt weit vor der Produktion von Werkzeugen oder Prototypen. Je früher Sie uns einbinden, desto besser können wir Sie unterstützen. Mit unserer jahrzehntelangen Erfahrung aus unzähligen Projekten in allen wichtigen Branchen sind wir Know-how-Träger. Wir wissen, wie man einen kurzen Produktentwicklungszyklus mit niedrigen Entwicklungskosten initiiert, ohne dabei an Qualität zu sparen. Wir verstehen alle Schritte – Entwicklung, Produktion, Weiterverarbeitung – als Einheit. Dieses ganzheitliche Vorgehen spart Zeit und Kosten. Fachleute für alle Teilprozesse haben wir hier bei uns vor Ort: Werkzeugmacher, Prototypenbauer, Produktentwickler und viele andere. Konstruktion: 3d-Konstruktion Produtkentwicklung Prototypen: 3d Druck SLA SLS Lasersintern Vakuumguss Engineering: Metallersatz Kostenreduktion Optimierung Muster für Versuche: aus Serienmaterial mechanisch bearbeitet
Kartendrucker DURACARD® ID 300, Art.-Nr. 891000, DURABLE

Kartendrucker DURACARD® ID 300, Art.-Nr. 891000, DURABLE

Ob Namensschilder, Kundenkarten oder Mitarbeiterausweise: Mit DURACARD bedrucken Sie Karten schnell und unkompliziert. Das professionelle System umfasst passendes Zubehör wie Farbbänder, Karten und Kartenhalter. • Ready-to-use Kartendrucker inkl. YMCKO-Farbband und blanko Karten für 100 Ausdrucke • Für die einseitige Bedruckung von Plastikkarten im Format 53,98 x 85,60 mm (ISO 7810, CR80) • Sublimationsdruck (mehrfarbig), Thermotransferdruck (monochrom schwarz) • Randloser, wasserfester Druck in Fotoqualität durch 260 x 300 dpi-Auflösung • Einfache Gestaltung mit kostenloser Beschriftungssoftware DURAPRINT® • 16 MB Speicher (RAM) • USB 2.0 (kompatibel mit USB 1.1 und 3.0) Kartendrucker DURACARD und Zubehör Lernen Sie die individuelle Lösung für professionell bedruckte Ausweiskarten kennen. Der Ready-to-use Kartendrucker DURACARD® ID 300 ist als Komplettpaket direkt einsatzbereit und bedruckt Ausweis-, Mitglieds- und Kundenkarten in hochwertiger Fotoqualität. Ideal, um ganz nach Bedarf und unabhängig von Druckereien auch kleine Stückzahlen herzustellen. Mit dem passenden Kartendrucker Zubehör kann beliebig nachgerüstet werden. Und mit der kostenlosen DURAPRINT® Software wird auch die Gestaltung zum Kinderspiel.
Formlabs White Resin (V3) Cartridge 1L

Formlabs White Resin (V3) Cartridge 1L

Das Formlabs White Resin kommt vorzugsweise bei detailgetreuen 3D-Modellen zum Einsatz, die eine glatte und ebenmässige Oberfläche erfordern. Die Modelle von höchster Qualität und hoher Auflösung werden strapazierfähig und extrem hart. Nach dem Polieren wirkt das Harz nahezu transparent. So können interne Merkmale heller Objekte und Modelle besonders hervorgehoben werdern. Sie möchten Vorführmodelle oder Grundlagen für zu bemalende Objekte erstellen? Dafür eignet sich das weiße Kunstharz besonders gut. Das White Resin der Version 3 verfügt über mattere Oberflächen und verbesserte Deckkraft. Unterstützte Druckauflösungen: 50 und 100 Mikrometer.
Die neuen Plotter / Großformatdrucker sind da

Die neuen Plotter / Großformatdrucker sind da

Canon imagePROGRAF TM-340 Der nachhaltige 36″ (91,4 cm) imagePROGRAF TM-340 bietet geräuschärmeres Drucken, intuitivere Funktionen und eine brillante Bildqualität für Architekturbüros, den Einzelhandel und das Bildungswesen und setzt damit neue Maßstäbe für die Druckleistung. Perfekt für CAD, GIS, Poster und Plakate
Druckkopf für IH-045 OCE CS2424/CS2436,(449B001)  29951267

Druckkopf für IH-045 OCE CS2424/CS2436,(449B001) 29951267

Druckkopf für IH-045 OCE CS2424/CS2436,(449B001) 29951267
Die Riccobono-Gruppe wird der europäische Marktführer für den Tiefdruck

Die Riccobono-Gruppe wird der europäische Marktführer für den Tiefdruck

Riccobono-Gruppe hat die Übernahme der TSB-Gruppe, Deutschlands führendem unabhängigen Tiefdruckunternehmen, abgeschlossen. Die Gruppe umfasst die Unternehmen Tiefdruck Schwann-Bagel "TSB", H+B Finishing, BASICO Finishing, ISI Storage, Garant Engineering & Purchasing und TSB Retail. Die ursprünglich zur Bagel Gruppe gehörende Gruppe mit Sitz in Mönchengladbach, betreibt auf 42.000 m2 sechs großformatige Tiefdruckmaschinen, zwei Ferag-Sammelhefttrommeln sowie drei Müller Martini Tempo Sammelhefter und ein automatisches Lagersystem für 16.000 Paletten. Mit aktuell über 300 Mitarbeitern erzielt die TSB einen Jahresumsatz größer 70 Millionen Euro im klassischen Tiefdruckumfeld. Das Unternehmen ist verlagsunabhängig und im Markt breit aufgestellt mit Produktionen für Verlage, Versandhandel und Einzelhandel. Seine Märkte sind Deutschland, Benelux, Großbritannien und seit vielen Jahren Frankreich. Durch diese Übernahme wird die heute schon in Frankreich marktführende Riccobono-Gruppe zum größten europäischen Tiefdruckunternehmen. Diese Übernahme stärkt die TSB Gruppe in Deutschland langfristig, denn sie ermöglicht Synergien in vielen Bereichen mit den sehr gut aufgestellten Unternehmen in Frankreich. Das Unternehmen Riccobono ist geprägt durch Innovationsfreude und Esprit. Wir freuen uns unseren Kunden neben unserem bekannten Produkt-Portfolio künftig auch neue Produktionen und exklusiv alternative Materialien bzw. Verarbeitungsmethoden anbieten zu können. Diese Übernahme geht mit einem Umstrukturierungsplan einher, der im Rahmen eines neu vereinbaren Tarifvertrages von 81 % der Belegschaft positiv bestätigt wurde. Er ermöglicht die sozialverträgliche Anpassung der vorhandenen Kapazitäten an die Entwicklung des deutschen Marktes, ohne dass die TSB Gruppe an Leistungsfähigkeit einbüßt. Diese Übernahme ist die wichtigste Entwicklung der Riccobono-Gruppe im Ausland und fügt sich perfekt in unsere Strategie des externen Wachstums ein. Sie ermöglicht es uns, uns auf dem deutschen Markt zu positionieren, der der wichtigste Markt für großvolumige Drucke ist. Die starke Marktposition der TSB Gruppe verbunden mit der auf die Nachfrage angepassten Kapazität stellt die jetzt erweiterte Riccobono Gruppe optimal für die weitere Entwicklung des europäischen Marktes auf. Wir freuen uns darauf auch dem deutschen Markt neue Perspektiven und industrielle Lösungen anbieten zu können. Wir begeben uns mit großem Enthusiasmus in dieses neue Abenteuer und die weitere Etappe unseres Wachstums." Ida Bagel fügt hinzu: "Wir freuen uns, in Herrn Riccobono und seiner familiengeführten Druckereigruppe einen Partner gefunden zu haben, der die TSB Gruppe am Standort Mönchengladbach in die Zukunft führen wird." Die Riccobono-Gruppe, die bereits in der fünften Generation druckt, ist insbesondere im Druck von Tageszeitungen, ihrem historischen Kerngeschäft, in Frankreich führend.
Mactac MACal Glass 798-01 Etched Glass, Glasdekorfolie

Mactac MACal Glass 798-01 Etched Glass, Glasdekorfolie

Glasdekorfolie, Frosteffekt, polymere kalandrierte PVC-Folie, 5 Jahre, 80µ, permanenter Lösemittelacrylatkleber Polymer kalandrierte Glasdekorfolie mit Frosteffekt (80µ, permanenter Lösemittelacrylatkleber). Ein Material, mit dem Sie das Beste aus Glas- oder Plexiglasfenstern herausholen – sowohl im Innen- als auch im Außenbereich. Diese besonders helle, transluzente Fensterfolie ermöglicht zuverlässige, permanente Dekorationen. Eine außergewöhnliche Möglichkeit, um Displays im Innenbereich und Fenster im Außenbereich zum Leben zu erwecken. Die Haltbarkeit im Außenbereich beträgt 5 Jahre, und die Folie ist für Feuer M1-zertifiziert. Rollenbreite: 61,5cm / 123cm / 152,4cm Rollenlänge: 50 lfm. erhältlich ab 5 lfm. - zzgl. Verpackung und Versand: 8,95€/netto - versandkostenfrei ab 260€/netto
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Tango Black FLX 973: Gummiartiges Aussehen und Eigenschaften Nachteile:: Tango Black FLX 973: Kann über die Zeit spröde werden Farben:: Tango Black FLX 973: Schwarz Bauteilgenauigkeit:: Tango Black FLX 973: ~ 300 µm Zugfestigkeit RM:: Tango Black FLX 973: 2 MPa Max. Betriebstemperatur:: Tango Black FLX 973: keine Angabe Härte:: Tango Black FLX 973: 61 Shore A Min. Wandstärke:: Tango Black FLX 973: 1 mm Schichtstärke:: Tango Black FLX 973: 0,016 mm Max. Bauraumgröße:: Tango Black FLX 973: 302 x 280 x 150 mm
Fused Deposition Modeling (FDM)

Fused Deposition Modeling (FDM)

Fused Deposition Modeling (FDM), auch bekannt als Fused Filament Fabrication (FFF), zeichnet sich durch seine Materialvielfalt aus. Das Verfahren ist besonders für voluminösen Bauteilen sowie Kleinserien geeignet Max. Größe: 1.000 mm x 500 mm x 500 mm Geeignet für: Prototypen, große Bauteile, Kleinserien Genauigkeit: +/- 0,5 % (min. +/- 0,3 mm) Produktionszeit: ab 1 Werktag WAS IST DAS FDM-VERFAHREN? Das Fused Deposition Modeling (FDM), auch bekannt als Fused Filament Fabrication (FFF), ist ein additives Fertigungsverfahren, bei dem ein Objekt Schicht für Schicht aus einem thermoplastischen Material aufgebaut wird. Dieses 3D-Druckverfahren zeichnet sich durch seine Materialvielfalt aus, da verschiedene Arten von thermoplastischen Filamenten verwendet werden können. Diese Filamente besteht aus verschiedenen Materialien wie ABS, ASA, PLA, PETG, PA, TPU, PC und vielen anderen. Die Materialvielfalt ermöglicht es, dass FDM/FFF für eine breite Palette von Anwendungen eingesetzt werden kann. Je nach den Anforderungen des Bauteils können verschiedene Materialien mit unterschiedlichen Eigenschaften verwendet werden. Zum Beispiel können hochfestes Material für mechanisch beanspruchte Teile, hitzebeständiges Material für Anwendungen mit hohen Temperaturen oder flexibles Material für elastische Bauteile eingesetzt werden. DAs FDM/FFF ist auch für voluminöse Bauteile und Kleinserien gut geeignet. Das Verfahren ermöglicht es, relativ große Bauteile ohne die Notwendigkeit spezieller Werkzeuge oder Formen herzustellen. Es ist skalierbar und erfordert nur wenig zusätzliche Vorbereitungszeit für die Produktion. Daher ist es sowohl für Prototypen als auch für die Herstellung von Kleinserien wirtschaftlich attraktiv. Allerdings weist FDM/FFF auch einige Einschränkungen auf. Die Schicht-für-Schicht-Bauweise kann zu sichtbaren Schichtlinien auf der Oberfläche des gedruckten Bauteil führen. Zudem kann die Bauteilfestigkeit in bestimmten Richtungen aufgrund der Schichtorientierung und des Schichtverbunds variieren. Dennoch kann die Bauteilfestigkeit durch die richtige Materialauswahl und einer konstruktionsgerechten 3D-Gestaltung verbessert werden. Insgesamt ist diese 3D-Drucktechnolgoie eine vielseitiges und zugängliches Verfahren mit breiten Anwendungsmöglichkeiten, insbesondere für voluminöse Bauteile und Kleinserienproduktion.
Fertigungsverfahren Elastomere Formteile (Gummiformteile)

Fertigungsverfahren Elastomere Formteile (Gummiformteile)

Wir verwenden verschiedene Fertigungsverfahren für Elastomere, um Gummiformteile für die Industrie herzustellen. Die Fertigungsverfahren sind das Compression-Molding-Verfahren (CM), das Compression-Transfermolding-Verfahren (CTM), Flüssigsilikon – Kautschuk (LSR = Liquid Silicone Rubber) und das Injection-Molding-Verfahren (IM). Compression-Molding-Verfahren (CM) Eine dem Fertigteil entsprechende Menge der unvernetzten Kautschukmischung wird meist manuell in eine beheizte Vulkanisierform eingebracht. Die Form wird dann unter Druck in einer Presse verschlossen. Bei Temperaturen von 140-200°C erfolgt die Vulkanisation der Kautschukmischung. Das vulkanisierte (vernetzte) Formteil wird dann heiß entnommen. Eine Weiterentwicklung des CM-Verfahrens ist das Compression-Transfermolding-Verfahren (CTM). Compression-Transfermolding-Verfahren (CTM) Compression-Transfermolding-Verfahren (CTM) ist ein Spritzpress-Verfahren bei dem die im oberen Teil einer Vulkanisierform eingelegte Kautschukmischung beim Zufahren der Presse durch Kanäle in die Formnester eingespritzt (transferiert) wird. CTM-Vulkanisierformen sind dreiteilig aufgebaut (Ober, Mittel-, Unterteil). Gegenüber dem Compression-Molding (CM) oder Pressverfahren verkürzen sich die Vulkanisationszeiten, da die Kautschukmischung durch die beim Einspritzen in die Nester auftretende Friktionswärme zusätzlich erhitzt wird. Transfermolding-Verfahren eignen sich besonders gut zur Herstellung von kleinen Gummiformteilen in Formen mit vielen Nestern. Ein Nachteil des CTM-Verfahrens ist die hohe Abfallmenge an ausvulkanisiertem Material in der Transfer-Einheit. Flüssigsilikon – Kautschuk (LSR = Liquid Silicone Rubber) Bei der Verarbeitung im Spritzgießverfahren werden zwei gebrauchsfertige Einzelkomponenten A+B im Verhältnis 1:1 gemischt und in die heiße Vulkanisierform eingespritzt. Die Flüssigsilikon-Kautschuke sind in Ihren Eigenschaften den Fest-Silikon-Kautschuken ähnlich. Sie zeigen also eine hohe Temperaturbeständigkeit, sehr gute Kälteflexibilität, ein hervorragendes Alterungsverhalten und ausgezeichnete elektrische Isoliereigenschaften. Darüber hinaus weisen sie eine gute Weiterreißfestigkeit und eine hohe Reißdehnung auf. LSR ist für die Härtebereiche Shore A 30-80 erhältlich. Anwendungsgebiete: Die Anwendungsgebiete für LSR-Formteile sind ähnlich den Formteilen aus Fest-Silikon-Kautschuk. Injection-Molding-Verfahren (IM) Beim Injection-Molding- oder Spritzgieß-Verfahren zur Herstellung von Gummiformteilen (EPDM, NBR, SPR, NR) wird die Kautschukmischung auf einer Spritzgießmaschine zunächst in einem Schneckenaggregat vorgewärmt, plastifiziert (80-100°C) und dann über Angusskanäle in die aufgeheizte Form eingespritzt. Das IM-Verfahren ist gegenüber dem Compression-Molding- bzw. Pressverfahren (CM) das modernere Verfahren zur Herstellung von Gummiformteilen. Durch die Plastifizierung im Spritzaggregat lassen sich gegenüber dem CM-Verfahren deutlich geringere Heizzeiten erzielen. Bei Einsatz geeigneter Handling-Technologie zur Entnahme der Gummiformteile ist auch ein vollautomatischer Formgebungsprozess möglich.
CNC Frästeile aus CFK Carbon CFRP Kohlefaserverstärktem Kunststoff

CNC Frästeile aus CFK Carbon CFRP Kohlefaserverstärktem Kunststoff

Sonderfrästeile aus Carbon nach Ihren Vorgaben. Wie fertigen für Sie Fräsbauteile aus Composite Materialien nach Ihren Vorgaben. Materialstärke: 3.0mm
Additive Fertigung

Additive Fertigung

Additive Fertigung Sie brauchen ein Ersatzteil, Musterstück oder nur einen Prototypen und das kostengünstig?
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer VeroClear RGD 810: Glatte Oberfläche, lange Haltbarkeit, lackierbar Nachteile:: Photopolymer VeroClear RGD 810: Nicht als Serienbauteil geeignet Farben:: Photopolymer VeroClear RGD 810: Transparent milchig Bauteilgenauigkeit:: Photopolymer VeroClear RGD 810: ~ 300 µm Zugfestigkeit RM:: Photopolymer VeroClear RGD 810: 50 - 65 MPa Max. Betriebstemperatur:: Photopolymer VeroClear RGD 810: 45 - 50 °C Härte:: Photopolymer VeroClear RGD 810: 83 Shore D Min. Wandstärke:: Photopolymer VeroClear RGD 810: 0,5 mm Schichtstärke:: Photopolymer VeroClear RGD 810: 0,016 mm Max. Bauraumgröße:: Photopolymer VeroClear RGD 810: 340 x 340 x 200 mm
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer AR-H1 ungetempert: Lange Haltbarkeit, lackier- und einfärbbar Nachteile:: Photopolymer AR-H1 ungetempert: Spröde Farben:: Photopolymer AR-H1 ungetempert: Transparent (Rotstich) Bauteilgenauigkeit:: Photopolymer AR-H1 ungetempert: ~ 200 µm Zugfestigkeit RM:: Photopolymer AR-H1 ungetempert: 16,1 – 31,4 MPa Max. Betriebstemperatur:: Photopolymer AR-H1 ungetempert: 72 °C Härte:: Photopolymer AR-H1 ungetempert: 87 Shore D Min. Wandstärke:: Photopolymer AR-H1 ungetempert: 1,5 mm Schichtstärke:: Photopolymer AR-H1 ungetempert: 0,02 mm Max. Bauraumgröße:: Photopolymer AR-H1 ungetempert: 297 x 210 x 200 mm
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer AR-H1 getempert: Lange Haltbarkeit, lackier- und einfärbbar Nachteile:: Photopolymer AR-H1 getempert: Spröde Farben:: Photopolymer AR-H1 getempert: Transparent (Rotstich) Bauteilgenauigkeit:: Photopolymer AR-H1 getempert: ~ 200 µm Zugfestigkeit RM:: Photopolymer AR-H1 getempert: 15,4 – 38,4 MPa Max. Betriebstemperatur:: Photopolymer AR-H1 getempert: 103 °C Härte:: Photopolymer AR-H1 getempert: 87 Shore D Min. Wandstärke:: Photopolymer AR-H1 getempert: 1,5 mm Schichtstärke:: Photopolymer AR-H1 getempert: 0,02 mm Max. Bauraumgröße:: Photopolymer AR-H1 getempert: 297 x 210 x 200 mm
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer VeroWhite Plus RGD 835: Glatte Oberfläche, lange Haltbarkeit, lackierbar Nachteile:: Photopolymer VeroWhite Plus RGD 835: Nicht als Serienbauteil geeignet Farben:: Photopolymer VeroWhite Plus RGD 835: Weiß Bauteilgenauigkeit:: Photopolymer VeroWhite Plus RGD 835: ~ 300 µm Zugfestigkeit RM:: Photopolymer VeroWhite Plus RGD 835: 50 - 65 MPa Max. Betriebstemperatur:: Photopolymer VeroWhite Plus RGD 835: 45 - 50 °C Härte:: Photopolymer VeroWhite Plus RGD 835: 83 Shore D Min. Wandstärke:: Photopolymer VeroWhite Plus RGD 835: 0,5 mm Schichtstärke:: Photopolymer VeroWhite Plus RGD 835: 0,016 mm Max. Bauraumgröße:: Photopolymer VeroWhite Plus RGD 835: 302 x 280 x 150 mm
MultiPack OcéTonerPearlsCartridge P2, 4 x 500gr, black für CW650, (6874B004) 29800273

MultiPack OcéTonerPearlsCartridge P2, 4 x 500gr, black für CW650, (6874B004) 29800273

MultiPack OcéTonerPearlsCartridge P2, 4 x 500gr, black für CW650, (6874B004) 29800273
CNC Frästeile aus CFK Carbon CFRP Kohlefaserverstärktem Kunststoff

CNC Frästeile aus CFK Carbon CFRP Kohlefaserverstärktem Kunststoff

Sonderfrästeile aus Carbon nach Ihren Vorgaben. Wie fertigen für Sie Fräsbauteile aus Composite Materialien nach Ihren Vorgaben. Materialstärke: 15.0mm
CNC Frästeile aus CFK Carbon CFRP Kohlefaserverstärktem Kunststoff

CNC Frästeile aus CFK Carbon CFRP Kohlefaserverstärktem Kunststoff

Sonderfrästeile aus Carbon nach Ihren Vorgaben. Wie fertigen für Sie Fräsbauteile aus Composite Materialien nach Ihren Vorgaben. Materialstärke: 1.5mm
CNC Frästeile aus CFK Carbon CFRP Kohlefaserverstärktem Kunststoff

CNC Frästeile aus CFK Carbon CFRP Kohlefaserverstärktem Kunststoff

Sonderfrästeile aus Carbon nach Ihren Vorgaben. Wie fertigen für Sie Fräsbauteile aus Composite Materialien nach Ihren Vorgaben. Materialstärke: 6.0mm
CNC Frästeile aus CFK Carbon CFRP Kohlefaserverstärktem Kunststoff

CNC Frästeile aus CFK Carbon CFRP Kohlefaserverstärktem Kunststoff

Sonderfrästeile aus Carbon nach Ihren Vorgaben. Wie fertigen für Sie Fräsbauteile aus Composite Materialien nach Ihren Vorgaben. Materialstärke: 50.0mm
CNC Frästeile aus CFK Carbon CFRP Kohlefaserverstärktem Kunststoff

CNC Frästeile aus CFK Carbon CFRP Kohlefaserverstärktem Kunststoff

Sonderfrästeile aus Carbon nach Ihren Vorgaben. Wie fertigen für Sie Fräsbauteile aus Composite Materialien nach Ihren Vorgaben. Materialstärke: 0.8mm