Schwingungsanalysen
Schwingungen: In so manchen technischen Anwendungen sind sie gewollt, in den meisten Fällen jedoch stören sie. Zum Problem werden Schwingungen dadurch, dass ein Konstruktionselement und erst recht eine gesamte Konstruktion sich nicht einheitlich verhält, sondern unterschiedliche Positionen sich unterschiedlich bewegen. Dadurch kommt es zu oszillierenden Verformungen und zu inneren Spannungen. Die Beanspruchung von Bauteilen ist bei Wechsellast bekanntlich deutlich höher als bei einer im Mittel gleich großen konstanten Last. Durch über einen längeren Zeitraum anhaltende Schwingungen können im Stahlbau Risse entstehen, insbesondere in Schweißnähten, die langfristig zum Versagen einer Konstruktion führen. Bei rotierenden Maschinen führen Translationsschwingungen zu einem schnelleren Verschleiß der Lager und anderer Komponenten.
- Was ist die Ursache für das Auftreten von Schwingungen an unserer Maschine oder Anlage?
- Sind die Schwingungen schadenswirksam oder tolerabel?
- Von welchen Konstruktionsmerkmalen oder Anlagenparametern sind sie abhängig?
- Was kann oder muss getan werden, um die Schwingungen zu vermindern oder sie ganz zu vermeiden?
Solche und weitere Fragen klärt eine Schwingungsanalyse.
Physics in Industry hilft Ihnen bei der Klärung und Lösung von Schwingungsproblemen. Je nach Schwingungssituation und abhängig von der Fragestellung setzen wir dafür unterschiedliche Methoden und Werkzeuge ein:
Schwingungsmessungen
Modalanalysen
Harmonische Analysen
Schwingungsmessung
Wozu Schwingungen messen? Dafür kann es verschiedene Gründe geben:
Es soll die Schwingungsursache ermittelt werden.
Die Ursache ist bekannt. Es soll das Schwingungsausmaß und das Schädigungspotenzial ermittelt werden.
Eine Maschine soll überprüft oder überwacht werden.
Treten Schwingungen völlig unerwartet auf, besteht der erste Schritt darin, die Schwingungsursache zu finden. Mithilfe von Schwingungsmessungen lassen sich sehr leicht die Schwingungsfrequenz(en), der Schwingungsmodus und die Abhängigkeit der Frequenz(en) und Amplitude(n) von Anlageneinstellungen ermitteln - alles wichtige Hinweise dafür, den Schwingungserreger zu identifizieren.
Schwingungsphänome sind vielfältiger Natur, sowohl was ihre Ursachen betrifft als auch ihr Erscheinungsbild. Doch das Prinzip ist immer das gleiche: stets gibt es einen Schwingungserreger und ein schwingungsfähiges System. Auch in solchen Fällen, in denen die Identität des Schwingungserregers offensichtlich ist, zum Beispiel beim Einsatz eines Rüttelsiebs mit Unwuchtantrieb, sind Messungen sinnvoll, wenn es darum geht, benachbarte Anlagenkomponenten nicht zu überlasten. Ist der Schwingungserreger vom Rest der Anlage nicht ausreichend schwingungsmäßig entkoppelt, werden benachbarte Anlagenkomponenten und Maschinen mitschwingen und sind so einer Wechselbelastung ausgesetzt, für die diese möglicherweise nicht ausgelegt sind.
Mithilfe von Schwingungsmessungen ermitteln wir die Schwingungsamplituden von Konstruktionen und Maschinen und - kombiniert mit einer harmonischen Analyse - die damit einhergehenden Spannungsamplituden. In einer Dauerfestigkeitsuntersuchung ermitteln wir die Schadenswirksamkeit.
Für die Schwingungsmessung setzen wir vorwiegend Beschleunigungssensoren ein. Diese sind in vielen Messbereichen und Genauigkeiten verfügbar und sehr unkompliziert in der Anwendung. Durch Einsatz mehrerer Sensoren gleichzeitig, verbunden mit einer computergestützten Messdatenaufzeichnung, lassen sich nicht nur die Schwingungsfrequenzen, sondern leicht auch die Amplituden- und Phasenrelationen zwischen unterschiedlichen Messpositionen oder -richtungen messen und so der Schwingungsmodus einer Konstruktion erfassen.
Primäre Messgröße ist die Beschleunigung und ihr zeitlicher Verlauf. Durch Fourier-Transformation (FFT) der von einem Sensor aufgenommenen Daten über ein Zeitintervall erhält man das zugehörige Frequenz-Spektrum. Durch Kombination der Frequenzspektren von aufeinander folgenden Zeitintervallen in einem gemeinsamen Diagramm lässt sich die zeitliche Entwicklung des Frequenzspektrums sichtbar machen (Wasserfall-Diagramm).
Ein spezielles und ebenfalls wichtiges Anwendungsgebiet für Schwingungsmessungen ist die Maschinendiagnostik. Mit entsprechend empfindlichen Sensoren lassen sich kleinste Abweichungen vom exakt runden Verlauf erfassen und am Frequenzspektrum ablesen. Diese Messung ist unkompliziert und erfolgt einfach außen am Gehäuse, erfordert also keinerlei Eingriff in das Innere der Maschine.
Eine minimale Unwucht des Rotors oder ein leicht beschädigter Zahn in einem Zahnradgetriebes bedeuten eine periodische Krafteinwirkung, deren Frequenz samt Oberschwingungen im Spektrum sichtbar wird. Ein etwas anderes Schwingungsbild ergibt sich bei Lagerverschleiß. Dies äußert sich in einem chaotisch wirkenden Frequenzspektrum. Je weiter fortgeschritten der Verschleiß, umso chaotischer stellt sich das Spektrum dar.
Modalanalyse
(FE-)Modal-Analysen dienen dazu, Eigenschwingungsformen und die