Finden Sie schnell Durchhärten für Ihr Unternehmen: 12 Ergebnisse

Vakuumhärten

Vakuumhärten

Eine Vielzahl hochlegierter Stähle und Edelstähle können nur unter sauerstofffreier Atmosphäre gehärtet bzw. geglüht werden. Dies geschieht in sogenannten Vakuumöfen in Temperaturbereichen bis zu 1200 °C, abgeschreckt wird mit gasförmigem Stickstoff. Bedingt durch die Ofen- und Prozesstechnik sind die Werkstückverzüge im Vergleich zum Schutzgashärten gering. Das Härtegut kommt in die kalte Ofenkammer, wird über vorbestimmte Temperatur-/Zeitprogramme erhitzt und dann unter hohem Stickstoffdruck abgehärtet. Durch den fehlenden Luftsauerstoff ist eine Reaktion an den Bauteiloberflächen nicht möglich. Das Ergebnis sind metallisch blanke Bauteile. Das Vakuumhärten findet bei H+W in Vakuumöfen verschiedener Abmessungen statt. Gängige Werkstoffe: Werkzeugstähle (wie z.B. 1.2379, 1.2343, 1.2436, 1.2767) Schnellarbeitsstähle (wie z.B. 1.3343) VA-Stähle (wie z.B. 1.4034, 1.4112)
Warum Verfestigungsstrahlen

Warum Verfestigungsstrahlen

steigert die Schwingfestigkeit im Zeit- und Dauerfestigkeitsbereich steigert die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion verhindert die Entstehung und Fortpflanzung von Rissen Das Verfahren ist bei allen metallischen Werkstoffen anwendbar! Eine höhere Schwingfestigkeit steigert entweder die zulässige Belastung eines Bauteiles oder die Sicherheit eines vorhandenen Bauteiles wird erhöht. Das Bauteil wird entweder dauerschwingfest oder die Zeitfestigkeit wird erhöht. Beispiele: Höhere Leistung bei gleichem Gewicht oder geringeres Gewicht bei gleicher Leistung Höhere Leistung bei gleicher Abmessung oder kleinere Abmessung bei gleicher Leistung Höhere Leistung bei gleichem Werkstoff oder größere Werkstoffauswahl bei gleicher Leistung Höhere Leistung bei gleicher Oberflächenqualität oder niedrigere Anforderung an die Oberflächenqualität bei gleicher Leistung Die elastische Verformung induziert in der plastifizierten Zone hohe Druckeigenspannungen. Das Bauteil wird durch die induzierte Druckeigenspannung an bzw. unter der Oberfläche von externen Zugspannungen entlastet und die Dauerschwingfestigkeit und die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion wird gesteigert. Gleichzeitig wird die Entstehung und Fortpflanzung von Rissen verhindert. Die Steigerung der Schwingfestigkeit ist bei Bauteilen mit hohen Kerb- und Formfaktoren, bei hohen Torsions- oder Biegespannungen, bei Stoßbelastungen, hochfesten und gehärteten Bauteilen relativ zur Ausgangsfestigkeit am größten. Strahlen lässt sich darüber hinaus zum Verdichten, Reinigen, Strippen, Strukturieren, Aufrauen, Mattieren, Glätten, Entgraten, Abtragen, Trennen, Gravieren und zum Umformen von dünnwandigen Bauteilen im elastischen Bereich einsetzen. Wirkung des Verfestigungsstrahlens Beim Verfestigungsstrahlen werden durch gezielten Beschuss mit durch Pressluft oder Fliehkraft beschleunigten, kugelförmigen Partikeln, die wie winzige Schmiedehämmer wirken, begrenzte plastische und elastische Verformungen in der Bauteilrandschicht erzeugt. Bei der Herz`schen Pressung werden die plastischen und elastischen Verformungen unter der Oberfläche erzeugt. Beide Wirkungen treten stets nebeneinander auf und werden durch die Strahlkenngrößen beeinflusst.
Einsatzstähle

Einsatzstähle

Die Werkstoffgruppe der Einsatzstähle umfasst C-Stähle mit niedrigem Kohlenstoffgehalt bei guter Umformbarkeit und Feinschneidqualität. Durch die Einsatzhärtung weisen die Bauteile verschleißarme Oberflächenschichten mit hoher Härte bei ausreichender Zähigkeit im Kern aus. Sie vereinen somit zahlreiche Eigenschaften und Anwendungsmöglichkeiten in unterschiedlichsten Branchen. Zur Erhöhung der Verschleißfestigkeit können Sie außerdem Teilbereiche aufkohlen oder carbonitrieren. GÜTEN: C 10 E, C 15 E / ➔ gem. DIN EN 10132 BEHANDLUNGSZUSTÄNDE: Je nach Kundenwunsch liefern wir Behandlungszustände von weichgeglüht bis hochkalt verfestigt.
Werkzeugbau

Werkzeugbau

Unsere Unternehmensgruppe verfügt über ein modernes Konstruktionsbüro mit ausgebildeten, erfahrenen Konstrukteuren. Sie arbeiten mit speziellen CAD/CAM-Software „VISI-Series“ für den Folgeverbundwerkzeugbau der Fa. Vero-International, sowie CAM-Software „PEPS“ der Firma CAMTEK.
Wärmebehandlung

Wärmebehandlung

- Wärmebehandlung eigener Gussteile, sowie Lohnarbeiten - Warm ausgehärtet (T6) - Teilausgehärtet (T64) - Entspannungsglühen (auch für nicht aushärtbare Legierungen) - Weichglühen
http://www.duengermanufaktur.de/produkte/biovegetal/biovegetal-rosen/

http://www.duengermanufaktur.de/produkte/biovegetal/biovegetal-rosen/

BioVegetal Rosendünger Nicht ohne Grund gilt die Rose als Symbol der Liebe – denn wer würde sich nicht sofort in den anmutigen Anblick eines in voller Blüte stehenden Rosenbusches verlieben? Die spezielle Zusammensetzung des Rosendüngers in Granulatform von BioVegetal macht Ihre Rosen zu den schönsten weit und breit.
Aufnahmeschäfte und Sonderlängen

Aufnahmeschäfte und Sonderlängen

Größere Längen, verschiedenste Anschlussausführungen und diverse Oberflächenausführungen sind auf Anfrage erhältlich. Gerne fertigen wir nach den Wünschen und Anforderungen unserer Kunden. Aus jahrelanger Erfahrung bieten wir unseren Kunden ein breites Spektrum an Aufnahmeschäften für die verschiedensten Gewindeaufnahmen und SDS-Aufnahmen je nach Bedarf des Kunden und die Marktanforderungen des jeweiligen Landes. Unsere Standard-Aufnahmen im Überblick: Aufnahmeschaft SDS-plus/6-kant mit Gewindeanschluss M16 Aufnahmeschaft SDS-plus mit Gewindeanschluss M14 Aufnahmeschaft SDS-plus/max mit Gewindeanschluss ½‘‘ UNF Aufnahmeschaft SDS-max mit Kegel 1:8 Aufnahmeschaft SDS-max mit Gewindeanschluss M20 Aufnahmeschaft SDS-plus mit Rundgewinde RD22xR6,5 Aufnahmeschaft SDS-plus mit Rundgewinde RD26xR6,35 Aufnahmeschaft SDS-plus auf Vierkant 12,7mm /1/2'' für Steckschlüsseleinsatz Aufnahmeschaft SDS-max auf Vierkant 19 mm / 3/4'' Bohrfutteraufnahmen SDS-plus mit Gewindeanschluss ½‘‘ UNF Bohrfutteraufnahmen SDS-plus mit Gewindeanschluss ½‘‘ UNF und Innengewinde M6 links Bohrfutteraufnahmen SDS-plus mit Gewindeanschluss ½‘‘ UNF mit Innensechskant
Terrassengleiterschrauben, inox gehärtet, (TX20) 4,2x24

Terrassengleiterschrauben, inox gehärtet, (TX20) 4,2x24

Terrassengleiterschrauben dienen der sicheren Befestigung des Terrassengleiters, unter dem Terrassenbelagholz bzw
Blindhärten

Blindhärten

unter „Blindhärten“ das Abhärten von Bauteilen, die aufgekohlt und anschließend partiell spanend bearbeitet wurden. Beim Zerspanen wurde die aufgekohlte Schicht entfernt. Daher erhalten die spanend bearbeiteten Bereiche beim Blindhärten aufgrund des fehlenden Kohlenstoffs eine deutlich geringere Härte als die nicht bearbeiteten Bereiche. Das Blindhärten findet bei H+W in Mehrzweckkammeröfen statt. Gängige Werkstoffe: Einsatzstähle (wie z.B. 1.7131 (16MnCr5) / 1.7139 (16MnCrS5), 1.7147 (20MnCr5) / 1.7149 (20MnCrS5), 1.2241 (41CrV4), 1.0401 (C15), 1.6587 (18CrNiMo7-6), …) Baustähle (wie z.B. 1.0570 (S355J2+N, St 52-3), 1.0037 (S235JR, St 37-2), …) Automatenstähle (wie z.B. 1.0715 (11SMn30) / 1.0718 (11SMnPb30), ETG 88, …)
Schutzgashärten

Schutzgashärten

Unter „Schutzgashärten“ versteht man das klassische Härten: Aufheizen auf Härtetemperatur mit anschließendem Abschrecken. Dabei wird im Ofeninneren eine Atmosphäre (das so genannte Schutzgas) erzeugt, die unerwünschte Reaktionen zwischen Bauteiloberfläche und der heißen Umgebungsluft unterbindet. Das Abschrecken erfolgt in speziellen Härteölen. Folgt nach dem Schutzgashärten ein Anlassen spricht man vom Vergüten. Das Schutzgashärten findet bei H+W in Mehrzweckkammeröfen statt. Gängige Werkstoffe: Vergütungsstähle (wie z.B. 1.7225 (42CrMo4), 1.0503 (C45), 1.2842 (90MnCrV8)) Lagerstähle (wie z.B. 1.3505 (100Cr6), 1.2210 (115CrV3))
Einsatzhärten

Einsatzhärten

Unter „Einsatzhärten“ versteht man das Anreichern des Randbereichs eines Werkstücks mit Kohlenstoff (Aufkohlen) mit anschließendem Härten. Dies geschieht bei H+W in einer kohlenstoffhaltigen Atmosphäre unter hohen Temperaturen. Das Abschrecken erfolgt in speziellen Härteölen. Durch das Aufkohlen der Randschicht und das anschließende Abhärten des gesamten Bauteils werden eine harte Randschicht und ein weicherer zäherer Kern erzeugt. Das Einsatzhärten findet bei H+W in Mehrzweckkammeröfen statt. Gängige Werkstoffe: - Einsatzstähle (wie z.B. 1.7131 (16MnCr5) / 1.7139 (16MnCrS5), 1.7147 (20MnCr5) / 1.7149 (20MnCrS5), 1.2241 (41CrV4), 1.0401 (C15), 1.6587 (18CrNiMo7-6), …)
Tiefkühlen

Tiefkühlen

Der Tiefkühlprozess bewirkt eine Umwandlung des Restaustenits in Martensit und ermöglicht somit die gezielte Gefügeumwandlung. Kohlenstoffreiche oder auch hochlegierte Stähle enthalten nach dem Härteprozess noch unerwünschten Restaustenit im Gefüge. Durch das Tiefkühlen wird dieser in gewünschten Martensit umgewandelt, so dass ein Wachstum der Bauteile durch eine erst spätere Umwandlung im Betrieb vermieden werden kann. Um das neu entstandene Gefüge zu entspannen, muss immer ein Anlassvorgang folgen. Im Anschluss an das meist mehrstündige Tiefkühlen können die Bauteile direkt in der Anlage entweder mur getrocknet oder auch direkt angelassen werden. Das Tiefkühlen findet bei H+W in zwei moderne Tiefkühlanlagen bei -120 °C statt. Als Kühlmedium kommt flüssiger Stickstoff zum Einsatz. Gängige Werkstoffe: Werkzeugstähle (wie z.B. 1.2379, 1.2436, 1.2767) VA-Stähle (wie z.B. 1.4112) Lagerstähle (wie z.B. 1.3505 (100Cr6), 1.2210 (115CrV3)