Finden Sie schnell diffusionsmangel für Ihr Unternehmen: 353 Ergebnisse

Hohlkehle

Hohlkehle

vorgefertigte Hohlkehlen aus Polymerbeton zur Verwendung als Sockelleiste / Wandanschlussleiste auf Balkonen, für Industriefußböden und Parkhäusern/-garagen POLYPROFIL®-Hohlkehlen werden aus einem hell eingefärbten Polymerbeton mit geringem spezifischen Gewicht hergestellt. Die Herstellung der Leisten erfolgt in Formen ohne Verwendung von Trennmitteln. POLYPROFIL®-Hohlkehlen lassen sich einfach verarbeiten und zeichnen sich durch ein geringes Gewicht bei hoher Druck- und Zugfestigkeit sowie äußerst geringe Wasseraufnahme aus. POLYPROFIL®-Hohlkehlen können mit Epoxid-, Polyurethan- oder Acrylatharzen beschichtet oder gestrichen werden. Hohlkehle 3/3: Hohlkehle 2.5/10 40 x 1,00 m / Karton: 10 x 1,00 m / Karton
Medikamente für spezialisierte Bereiche

Medikamente für spezialisierte Bereiche

Spezialmedikamente werden von Fachärzten verschrieben. Dazu zählen unsere Krebsmedikamente, die das Potenzial haben, das Leben von Patienten zu verändern. Wir entwickeln auch Medikamente für Immunerkrankungen, darunter das erste neue Medikament seit über 50 Jahren für die chronische Autoimmunerkrankung Lupus. Wir sind weltweit führend in der Entwicklung von HIV-Medikamenten. Nachdem wir in den 1980er Jahren die ersten HIV-Therapien entwickelt haben, ist es nun unser Ziel, die Auswirkungen von HIV auf das Leben der Menschen zu mindern. Das machen wir, indem wir die Krankheit behandeln, ihr vorbeugen und sie schließlich heilen.
Medikamente für die Allgemeinmedizin

Medikamente für die Allgemeinmedizin

Medikamente für die Allgemeinmedizin werden in der Regel von Haus- und Fachärzten für Allgemeinmedizin verschrieben. Dazu gehören unsere inhalativen Medikamente gegen Asthma und COPD, Antibiotika und Medikamente gegen Hautkrankheiten. Jeden Tag verbessern diese Arzneimittel die Gesundheit und das Leben von Millionen von Menschen auf der ganzen Welt. Seit mehr als 50 Jahren haben wir Millionen von Menschen mit Atemwegserkrankungen geholfen, leichter zu atmen, unter anderem mit den ersten Inhalatoren im Jahr 1969. Wir sind nach wie vor Branchenführer in der Atemwegsforschung. Wie wir Krankheiten vorbeugen und behandeln.
Compounds

Compounds

Stösst die Einfärbung mit Farbkonzentraten bei den Kunden an technische Grenzen, entwickeln wir einen einsatzfertigen Compound. Neben den Masterbatches beherrschen wir auch die traditionellen Methoden der Einfärbung – Farbpulver und Flüssigfarbe. So wählen wir je nach Farbe und Kunststoff das passende Verfahren für ein optimales Resultat. Compounds stellen wir aus nahezu allen thermoplastischen Kunststoffen her. Nachfolgend eine Auswahl: PE, PP PS, PSB, ABS, SAN, ASA PET, PETG, PBT, PCTG TPE (Thermoplastische Elastomere) LCP, PPS, PPSU, PSU, PEEK, PEI Bio-Polymere PA6, PA6.6, PA11, PA12, PPA, Polyamidblends Produkte Unsere Produkte Farbmasterbatch Additive Compounds Bruno Peter AG Farbkonzentrate für Kunststoffe
Auftragsanalytik

Auftragsanalytik

Ausgehend von den beiden in unserem Labor betriebenen Trennsystem-Varianten für physiologische Proben und Proteinhydrolysate (Li- und Na-Puffersysteme), bieten wir die Durchführung von Auftragsanalysen, sowie - falls erforderlich - entsprechende Methodenentwicklungen an. Unser Leistungsspektrum für die Aminosäurenbestimmung umfasst: - freie Aminosäuren - Aminosäuren nach saurer Hydrolyse - Aminosäuren nach Oxidation und saurer Hydrolyse - Aminosäurenanalyse nach alkalischer Hydrolyse Neben den normalen Aminosäuren, können wir auch die Bestimmung von exotischeren ninhydrinpositiven Verbindungen (beispielsweise im Rahmen von Forschungsprojekten) ausarbeiten. Wir freuen uns über Ihre Anfrage.
Warum Verfestigungsstrahlen

Warum Verfestigungsstrahlen

steigert die Schwingfestigkeit im Zeit- und Dauerfestigkeitsbereich steigert die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion verhindert die Entstehung und Fortpflanzung von Rissen Das Verfahren ist bei allen metallischen Werkstoffen anwendbar! Eine höhere Schwingfestigkeit steigert entweder die zulässige Belastung eines Bauteiles oder die Sicherheit eines vorhandenen Bauteiles wird erhöht. Das Bauteil wird entweder dauerschwingfest oder die Zeitfestigkeit wird erhöht. Beispiele: Höhere Leistung bei gleichem Gewicht oder geringeres Gewicht bei gleicher Leistung Höhere Leistung bei gleicher Abmessung oder kleinere Abmessung bei gleicher Leistung Höhere Leistung bei gleichem Werkstoff oder größere Werkstoffauswahl bei gleicher Leistung Höhere Leistung bei gleicher Oberflächenqualität oder niedrigere Anforderung an die Oberflächenqualität bei gleicher Leistung Die elastische Verformung induziert in der plastifizierten Zone hohe Druckeigenspannungen. Das Bauteil wird durch die induzierte Druckeigenspannung an bzw. unter der Oberfläche von externen Zugspannungen entlastet und die Dauerschwingfestigkeit und die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion wird gesteigert. Gleichzeitig wird die Entstehung und Fortpflanzung von Rissen verhindert. Die Steigerung der Schwingfestigkeit ist bei Bauteilen mit hohen Kerb- und Formfaktoren, bei hohen Torsions- oder Biegespannungen, bei Stoßbelastungen, hochfesten und gehärteten Bauteilen relativ zur Ausgangsfestigkeit am größten. Strahlen lässt sich darüber hinaus zum Verdichten, Reinigen, Strippen, Strukturieren, Aufrauen, Mattieren, Glätten, Entgraten, Abtragen, Trennen, Gravieren und zum Umformen von dünnwandigen Bauteilen im elastischen Bereich einsetzen. Wirkung des Verfestigungsstrahlens Beim Verfestigungsstrahlen werden durch gezielten Beschuss mit durch Pressluft oder Fliehkraft beschleunigten, kugelförmigen Partikeln, die wie winzige Schmiedehämmer wirken, begrenzte plastische und elastische Verformungen in der Bauteilrandschicht erzeugt. Bei der Herz`schen Pressung werden die plastischen und elastischen Verformungen unter der Oberfläche erzeugt. Beide Wirkungen treten stets nebeneinander auf und werden durch die Strahlkenngrößen beeinflusst.
Warum Verfestigungsstrahlen

Warum Verfestigungsstrahlen

steigert die Schwingfestigkeit im Zeit- und Dauerfestigkeitsbereich steigert die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion verhindert die Entstehung und Fortpflanzung von Rissen Das Verfahren ist bei allen metallischen Werkstoffen anwendbar! Eine höhere Schwingfestigkeit steigert entweder die zulässige Belastung eines Bauteiles oder die Sicherheit eines vorhandenen Bauteiles wird erhöht. Das Bauteil wird entweder dauerschwingfest oder die Zeitfestigkeit wird erhöht. Beispiele: Höhere Leistung bei gleichem Gewicht oder geringeres Gewicht bei gleicher Leistung Höhere Leistung bei gleicher Abmessung oder kleinere Abmessung bei gleicher Leistung Höhere Leistung bei gleichem Werkstoff oder größere Werkstoffauswahl bei gleicher Leistung Höhere Leistung bei gleicher Oberflächenqualität oder niedrigere Anforderung an die Oberflächenqualität bei gleicher Leistung Die elastische Verformung induziert in der plastifizierten Zone hohe Druckeigenspannungen. Das Bauteil wird durch die induzierte Druckeigenspannung an bzw. unter der Oberfläche von externen Zugspannungen entlastet und die Dauerschwingfestigkeit und die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion wird gesteigert. Gleichzeitig wird die Entstehung und Fortpflanzung von Rissen verhindert. Die Steigerung der Schwingfestigkeit ist bei Bauteilen mit hohen Kerb- und Formfaktoren, bei hohen Torsions- oder Biegespannungen, bei Stoßbelastungen, hochfesten und gehärteten Bauteilen relativ zur Ausgangsfestigkeit am größten. Strahlen lässt sich darüber hinaus zum Verdichten, Reinigen, Strippen, Strukturieren, Aufrauen, Mattieren, Glätten, Entgraten, Abtragen, Trennen, Gravieren und zum Umformen von dünnwandigen Bauteilen im elastischen Bereich einsetzen. Wirkung des Verfestigungsstrahlens Beim Verfestigungsstrahlen werden durch gezielten Beschuss mit durch Pressluft oder Fliehkraft beschleunigten, kugelförmigen Partikeln, die wie winzige Schmiedehämmer wirken, begrenzte plastische und elastische Verformungen in der Bauteilrandschicht erzeugt. Bei der Herz`schen Pressung werden die plastischen und elastischen Verformungen unter der Oberfläche erzeugt. Beide Wirkungen treten stets nebeneinander auf und werden durch die Strahlkenngrößen beeinflusst.
Warum Verfestigungsstrahlen

Warum Verfestigungsstrahlen

steigert die Schwingfestigkeit im Zeit- und Dauerfestigkeitsbereich steigert die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion verhindert die Entstehung und Fortpflanzung von Rissen Das Verfahren ist bei allen metallischen Werkstoffen anwendbar! Eine höhere Schwingfestigkeit steigert entweder die zulässige Belastung eines Bauteiles oder die Sicherheit eines vorhandenen Bauteiles wird erhöht. Das Bauteil wird entweder dauerschwingfest oder die Zeitfestigkeit wird erhöht. Beispiele: Höhere Leistung bei gleichem Gewicht oder geringeres Gewicht bei gleicher Leistung Höhere Leistung bei gleicher Abmessung oder kleinere Abmessung bei gleicher Leistung Höhere Leistung bei gleichem Werkstoff oder größere Werkstoffauswahl bei gleicher Leistung Höhere Leistung bei gleicher Oberflächenqualität oder niedrigere Anforderung an die Oberflächenqualität bei gleicher Leistung Die elastische Verformung induziert in der plastifizierten Zone hohe Druckeigenspannungen. Das Bauteil wird durch die induzierte Druckeigenspannung an bzw. unter der Oberfläche von externen Zugspannungen entlastet und die Dauerschwingfestigkeit und die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion wird gesteigert. Gleichzeitig wird die Entstehung und Fortpflanzung von Rissen verhindert. Die Steigerung der Schwingfestigkeit ist bei Bauteilen mit hohen Kerb- und Formfaktoren, bei hohen Torsions- oder Biegespannungen, bei Stoßbelastungen, hochfesten und gehärteten Bauteilen relativ zur Ausgangsfestigkeit am größten. Strahlen lässt sich darüber hinaus zum Verdichten, Reinigen, Strippen, Strukturieren, Aufrauen, Mattieren, Glätten, Entgraten, Abtragen, Trennen, Gravieren und zum Umformen von dünnwandigen Bauteilen im elastischen Bereich einsetzen. Wirkung des Verfestigungsstrahlens Beim Verfestigungsstrahlen werden durch gezielten Beschuss mit durch Pressluft oder Fliehkraft beschleunigten, kugelförmigen Partikeln, die wie winzige Schmiedehämmer wirken, begrenzte plastische und elastische Verformungen in der Bauteilrandschicht erzeugt. Bei der Herz`schen Pressung werden die plastischen und elastischen Verformungen unter der Oberfläche erzeugt. Beide Wirkungen treten stets nebeneinander auf und werden durch die Strahlkenngrößen beeinflusst.
Herausforderungen in der Analytik

Herausforderungen in der Analytik

Mit der zunehmenden rechtlichen Verschärfung der erlaubten Höchstmengen für Mykotoxine in Lebens- und Futtermitteln werden auch höhere Anforderungen an die Probennahme und Analytik gestellt. Um die Einhaltung der geforderten Werte zu ermöglichen, ist eine statistisch repräsentative Probenmenge zu erheben. Der analytische Nachweis der einzelnen Verbindungen muss für den spezifischen Verwendungszweck ausreichend empfindlich und selektiv sein. Nur somit kann eine größtmögliche Produktsicherheit gewährleistet werden.
Frequenzumrichter

Frequenzumrichter

Hohe Leistung und große Vielfalt Wir liefern leistungsstarke Umrichter, die automatisch gesteuerte Motorfunktionen und Betriebsdrehzahlen für eine Vielzahl von AC-Antriebs-/VFD-Anwendungen (Variable Frequency Drive) bieten. Die FRENIC-Baureihe von Fuji Electric ist mit umfangreichen Funktionen und Leistungsmerkmalen ausgestattet, um unterschiedlichen Anforderungen gerecht zu werden. Sie ermöglicht eine einfache Wartung, Energie- und Kosteneinsparungen und trägt zur Umweltfreundlichkeit bei. Weitere Informationen finden Sie in unserem Selection Guide für Niederspannungsantriebe von Fuji Electric. Produkte Industrielle Anwendungen FRENIC-VG (FRN-VG1) Unit FRENIC-VG (FRN-VG1) Stack FRENIC-Ace (FRN-E2) FRENIC-Mini (FRN-C2) FRENIC-Micro (FVR-AS1S) Pumpen & HVAC FRENIC-AQUA (FRN-AQ1) FRENIC-HVAC (FRN-AR1) FRENIC-Ace-H (FRN-E2H) FRENIC-Ace für Solarpumpen Lift FRENIC-Lift (FRN-LM2A) FRENIC-Lift (FRN-LM2C) FRENIC-Lift (FRN-LM1) FRENIC-Lift (WLM2A) Wall mounted Service & Support Lösunge
Introduction to Femtosecond Laser Optics

Introduction to Femtosecond Laser Optics

Kurzpuls-Laser finden in zahlreichen Anwendungen Verwendung, wie beispielsweise in der zeitaufgelösten Spektroskopie, der präzisen Materialbearbeitung und der breitbandigen Telekommunikation. Getrieben von diesen Anwendungen zielen aktuelle Entwicklungen auf Laser ab, die eine höhere Ausgangsleistung und kürzere Pulse erzeugen können. Heutzutage wird die meiste Arbeit in der Kurzpuls-Physik mit Ti:Saphir-Lasern durchgeführt, aber auch Farbstofflaser und Festkörperlaser auf Basis anderer Übergangsmetalle oder seltenen Erden dotierter Kristalle wie Yb:KGW werden zur Erzeugung von Femtosekundenpulsen verwendet. Die reproduzierbare Erzeugung von Sub-100-fs-Pulsen hängt eng mit der Entwicklung von breitbandigen, verlustarmen dispersiven Verzögerungsleitungen zusammen, die aus Prismen- oder Gitterpaaren oder dispersiven Mehrschichtreflektoren bestehen. Die spektrale Bandbreite eines Pulses steht in Beziehung zur Pulsdauer nach einem bekannten Theorem der Fourier-Analyse. Zum Beispiel beträgt die Bandbreite (FWHM) eines 100-fs-Gauß-Pulses bei 800 nm 11 nm. Bei kürzeren Pulsen wird das Wellenspektrum signifikant breiter. Ein 10-fs-Puls hat eine Bandbreite von 107 nm. Wenn ein solcher breiter Puls durch ein optisches Medium propagiert, breiten sich die spektralen Komponenten dieses Pulses mit unterschiedlichen Geschwindigkeiten aus. Dispersive Medien wie Glas verursachen eine sogenannte "positive Chirp" auf den Puls, was bedeutet, dass die kurzwelligeren ("blauen") Komponenten im Vergleich zu den langwelligeren ("roten") Komponenten verzögert werden (siehe schematische Zeichnung in Abbildung 1). Eine ähnliche Verbreiterung kann beobachtet werden, wenn ein Puls von einem dielektrischen Spiegel reflektiert wird und die Bandbreite des Pulses größer oder gleich der Breite des Reflexionsbands des Spiegels ist. Auch breitbandige Spiegel, die aus einem Doppelschichtsystem bestehen, verursachen eine Pulsausbreitung, da die Laufzeiten der spektralen Komponenten des Pulses in diesen Beschichtungen extrem unterschiedlich sind. Im Sub-100-fs-Bereich ist es entscheidend, die Phaseneigenschaften jedes optischen Elements über die extrem breite Bandbreite des fs-Lasers zu kontrollieren. Dies gilt nicht nur für die Stretcher- und Compressor-Einheiten, sondern auch für die Hohlspiegel, Auskoppelspiegel und das Strahlpropagationssystem. Neben dem Leistungsspektrum, d.h. der Reflexion oder Transmission, müssen auch die Phasenbeziehungen zwischen den Fourier-Komponenten des Pulses erhalten bleiben, um eine Verbreiterung oder Verzerrung des Pulses zu vermeiden. Eine mathematische Analyse der Phasenverschiebung, die einem Puls beim Durchgang durch ein Medium oder bei der Reflektion an einem Spiegel zugefügt wird, zeigt, dass die Hauptphysikalischen Eigenschaften, die dieses Phänomen beschreiben, die Gruppendispersionsverzerrung (GDD) und die Verzerrungen dritter Ordnung (TOD) sind. Diese Eigenschaften werden als zweite bzw. dritte Ableitung der reflektierten Phase in Bezug auf die Frequenz definiert. Speziell entwickelte dielektrische Spiegel bieten die Möglichkeit, einem Puls eine "negative Chirp" aufzuerlegen. Auf diese Weise kann der positive Chirp, der sich aus Kristallen, Fenstern usw. ergibt, kompensiert werden. Die schematische Zeichnung in Abbildung 2 erklärt diesen Effekt anhand verschiedener optischer Pfadlängen von blauem, grünem und rotem Licht in einem solchen Spiegel mit negativer Dispersion. LAYERTEC bietet Femtosekunden-Laseroptiken mit unterschiedlichen Bandbreiten an. Dieser Katalog zeigt z.B. Optiken für den Well
Nachweis von Endotoxinen

Nachweis von Endotoxinen

Als Bestandteile der Außenhülle Gram-negativer Bakterien können Endotoxine im Körper toxisch wirken. Bruchstücke der Zellen werden auch nach dem Zelltod noch freigesetzt und können so unerwartet hohe Toxin-Belastungen hervorrufen. Die Überwachung von Endotoxinen macht vor allem an exponierten Arbeitsplätzen Sinn, wie z.B. bei Tierställen, Getreidemühlen, in der Futtermittelindustrie und Abfallentsorgung und in der Nähe von Klimaanlagen. Hohe Endotoxinbelastungen üben eine Initialrolle bei bestimmten Atemwegserkrankungen des Menschen aus. Endotoxine, welche direkt mit der Blutbahn in Berührung kommen, können bereits in sehr geringen Mengen Fieber erzeugen, daher werden Endotoxine auch Pyrogene genannt. Aus diesem Grund ist besonders Dialysewasser zu überwachen (siehe Abschnitt Dialysewasser). Aber auch die Oberflächen von Medizinprodukten müssen auf ihre Endotoxinbelastung hin untersucht werden. Hier finden Sie einen ausführlichen Artikel zum Thema: Was sind Endotoxine? Mit unserer jahrelangen Expertise sind wir IHR PARTNER im Bereich Endotoxinmessung. Gerne helfen wir Ihnen bei Ihren individuellen Fragestellungen und unterstützen Sie beratend bei der Sanierung. Das MIKROBIOLOGISCHE LABOR bietet Ihnen zum Beispiel folgende Leistungen im Bereich der Endotoxinbestimmung Endotoxine im Wasser Endotoxine in der Luft (am Arbeitsplatz oder in Emissions-/Immissionsproben) Endotoxine im Dialysewasser Endotoxine in wässrigen Extrakten (z.B. Zuckerproben) Eine Störung des Endotoxintests ist durch die extreme Sensibilität des eingesetzten Lysats sehr schnell gegeben. So können die in der Nachweis-Kaskade ablaufenden Enzym-Reaktionen durch kleine Veränderungen in der Probenzusammensetzung weitreichend gestört werden. Beispiele für Störende Substanzen oder Gegebenheiten sind in der Probe enthaltene ß-Glucane, extreme pH-Werte durch Säuren oder Basen, Desinfektionsmittel wie Peroxide oder eine starke Trübung oder Färbung der zu messenden Probe. Mögliche Tests zur Bestimmung des Endotoxingehalts: LAL-Test (Limulus-Amoebozyten-Lysat-Test): Je nach Sensitivitätsbereich wird mit turbidimetrischer (0,005 bis 1 EU/ml) oder chromogenkinetischer Methode (0,005 bis 50 EU/ml) im Microplate Reader gemessen. rFC Test (rekombinanter-Faktor-C-Test): Neue Methode der Entoxinmessung mit rekombinant erzeugtem Endotoxin-Rezeptor (Faktor C). Die Quantifizierung erfolgt mit einer hochsensitiven Floureszenz-Detektion. Die Reaktion des rFC-Tests ist weniger störungsanfällig, da diese nur auf einem Enzym basiert und der Rest der natürlichen Reaktionskaskade ausgeklammert ist. So ist z.B. eine Aktivierung durch die häufig störenden ß-Glucane nicht möglich. Der rFC-Test ist nach der europäischen Pharmakopöe Kapitel 5.1.10 eine zugelassene Alternative des bereits bekannten LAL-Tests. Sollten Sie diese oder eine andere, nicht genannte Testung im Bereich Endotoxinbestimmung wünschen, zögern Sie nicht Kontakt mit uns aufzunehmen. Wir freuen uns mit Ihnen zusammen eine individuelle Lösung zu finden.
Oxidationskatalysator

Oxidationskatalysator

Bei Dieselmotoren werden Oxidationskatalysatoren eingesetzt. Der Aufbau dieser Katalysatoren entspricht prinzipiell dem des Ottomotors. Der Unterschied besteht lediglich in der Beschichtung. Der Oxidationskatalysator oxidiert wirkungsvoll Kohlenmonoxid (CO) und Kohlenwasserstoffe (HC). Aufgrund des Verbrennungsverfahrens mit Luftüberschuss, also Lambda (λ) > 1, und des damit verbundenen hohen Restsauerstoffanteils im Abgas, ist eine Reduktion der Stickoxide (NO) jedoch nicht möglich.
Ebenheitsmessung

Ebenheitsmessung

Mit dem Ebenheitsmessgerät Flatmaster 100 der Firma Tropel können wir in kürzester Zeit die Ebenheit von geschliffenen, geläppten und polierten Oberflächen messen und protokollieren. Spezifikationen: Messgenauigkeit: 50 nm Wiederholbarkeit: 15 nm Auflösung: 5 nm Messzeit: 5 sek. Standartmessungen Ebenheit, Linienprofil,Oberflächenprofil, Radius Auswertungen 3-D, Topografie, Isometrisch, Verteilung, Kontur, Schnitte (radial / X / Y / Durchmesser / Kreisförmig)
Optische Fasern Index

Optische Fasern Index

Optische Faser Optische Fasern sind optische Übertragungssysteme mit Steckverbindern, die als konfektionierte Kabel oder medizinische Laser-Sonden zu einer flexiblen Übertragung von Licht, Signale oder Laserstrahl von der Quelle zum Ziel bzw. zur behandelnden Stelle dienen. Eine Optische Faser besteht aus einem Kern, einem optischen Mantel mit niedrigerem Brechungsindex (auch als „Cladding“ bezeichnet) und einem äußeren Mantel „Jacket“ oder auch „Coating“ genannt. Optische Fasern als Medizinische Lasersonde In der Medizin werden Optische Fasern für die Übertragung von Laserstrahlen (minimalinvasiv), an den erkrankten Stellen für verschiede Anwendungen zum (Schneiden, Koagulieren, Vaporisieren) eingesetzt
Verformungsmessung

Verformungsmessung

Wir bieten Ihnen Verformungs- und Dehnungsmessungen für die Analyse von Schädigungsmechanismen oder die Ermittlung von Werkstoffkenngrößen sowohl auf der Probenoberfläche als auch im Probeninneren. Messungen können bei uns im Haus oder bei Ihnen vor Ort erfolgen. Leistungsangebot Optische Ermittlung lokaler thermischer Ausdehnungskoeffizienten Mit der optischen Ermittlung der Dehnung direkt auf der Materialoberfläche kann nicht nur der thermische Ausdehnungskoeffizient (CTE - Coefficient of Thermal Expansion) als Kennwert des Materials bestimmt, sondern vor allem vorteilhaft die thermischen Ausdehnung in lokalen Bereichen von Materialverbunden ermittelt werden. Somit können äquivalente Kennwerte für den CTE zur Verfügung gestellt werden, die das reale thermisch bedingte Ausdehnungsverhalten im Material- oder Bauteilverbund widerspiegeln. Insbesondere im Bereich der Mikroelektronik sind diese genaueren Eingangsdaten eine wichtige Basis für Zuverlässigkeitsbewertungen mit FE-Simulation. Thermomechanische Charakterisierung von Materialien und Aufbauten der Mikrotechnik Mikroelektronische Systeme sind in der Praxis ständigen Temperaturwechselbelastungen ausgesetzt, die zu Schädigungen, insbesondere in Interfacebereichen der Materialverbunde, führen. Thermomechanische Untersuchungen im Querschliff des mikroelektronischen Verbundes können Verformungs- und Schädigungsmechanismen aufklären oder auch schon in der Designphase der Mikrosysteme zur Optimierung der Verbindungen (z. B. der Löt- oder Sinterverbindungen) eingesetzt werden. Die thermischen Messungen können im Temperaturbereich von -40°C bis 300°C erfolgen. Verformungsmessungen unter Zug-, Druck oder Biegebelastung Zur Charakterisierung Ihrer Materialen, Materialverbunde und Bauteile können Versuche unter Zug-, Druck- und Biegebelastung durchgeführt werden. Entsprechend Ihrer Anforderungen erfolgt die Ergebnisauswertung auf Basis der microDAC® Software VEDDAC. Verformungs- und Schädigungsanalysen im Innern von Materialien Für eine umfassende zerstörungsfreie Analyse des Materialverhaltens im Innern des Messobjektes (Werkstoff, Bauteil) ermöglicht die Computertomographie (CT) eine vollständige, hochauflösende und dreidimensionale Abbildung des Untersuchungsgegenstandes. Es lassen sich innere Oberflächen inspizieren, beliebige virtuelle Schnitte durch den Prüfling legen, Risse und Porenverteilungen im Gefüge analysieren. Mit dem zusätzlichen Einsatz des microDAC® volume als Verfahren der Digitalen Volumenkorrelation (DVC) ist eine quantitative Analyse von 3d-Verformungen im Objektinneren möglich. Bewegungs- und Verformungsanalysen beim Kunden Entsprechend Ihrer Messaufgabe können wir Bewegungs- und Verformungsanalysen mit unseren microDAC® - Messsystemen bei Ihnen vor Ort durchführen. Dafür passen wir unsere Kamerasysteme an Ihre Aufgabenstellung, das Messobjekt bzw. auch Belastungstechnik an. Es können sowohl Industriekamerasysteme für eine hohe Messwertauflösung als auch Hochgeschwindigkeitskameratechnik für dynamische Prozesse zum Einsatz kommen. Was müssen wir von Ihnen wissen? Was ist die Messaufgabe? Welches Messobjekt (Foto, Zeichnung)? Wie groß ist der Bildausschnitt, der betrachtet werden muss? Wie groß sind die zu erwartenden Verschiebungen bzw. Dehnungen? Wie schnell ist der Bewegungs- oder Verformungsprozess?
Wirbelsintern

Wirbelsintern

Wirbelsintern ist ein Pulverbeschichtungsverfahren zum Beschichten von metallischen Bauteilen. Es eignen sich insbesondere Polyamid ( Rilsan ) und Polyethylen Pulver zur Erzeugung dichter funktioneller Beschichtungen u.a. als Korrosionsschutz und zur elektrischen Isolation Wie funktioniert Wirbelsintern Das Wirbelsintern beschreibt ein Verfahren bei dem Pulver in einem Bad mit porösem Boden durch das Einblasen von Luft verflüssigt und in Schwebe gehalten werden. Beim Wirbelsintern werden die in einem Ofen vorgewärmten Bauteile für eine bestimmte Zeit getaucht und bewegt. Das Pulver schmilzt solange die Oberflächentemperatur des Bauteils höher ist als die Schmelztemperatur des Pulvers. Während des Wirbelsinter Prozesses kann das eintauchen des Pulvers auch mehrfach erfolgen um die gewünschte Schichtdicke zu erzeugen. Auch ein Nachsintern ist möglich. Dies bietet sich beim Wirbelsintern besonders bei Bauteilen mit unterschiedlichen Wandstärken an um die geforderte Oberflächengüte zu erzeugen. Vorteile des Wirbelsinterns gegenüber herkömmlichen Pulverbeschichtungsverfahren keine Pulververluste durch Overspray im Vergleich zum Pulverbeschichten Ausgezeichnete Korrosionsschutzschichten durch dicht verschmolzene Oberflächen Rilsan Beschichtungen ( Polyamid ) universell einsetzbar für funktionelle Anwendungen Wirtschaftliches und umweltfreundliches Verfahren Grosse Auswahl unterschiedlicher Polyethylen Pulver Nachteile beim Wirbelsintern Höhere Ofentemperatur zum Vorwärmen der Bauteile Nur bedingt geeignet bei Bauteilen mit komplizierter Geometrie Nicht möglich bei "schöpfender" Geometrie Rilsan Beschichtung Rilsan ist ein sehr umweltfreundliches Pulver. Es wird aus natürlichen Ressourcen (Rizinusöl) gewonnen. Somit ist das Wirbelsintern von Rilsan aufgrund fehlender Oversprayverluste eine sehr nachhaltige und wirtschafliche Technologie. Eingesetzt wird Rilsan , aufgrund seiner guten elektrisch isolierenden Eigenschaften, vor allem in der Medizintechnik. Neben der Durchschlagfestigkeit verbindet Rilsan die Eigenschaften einer Antihaftbeschichtung mit denen einer Korrosionsschutz Beschichtung Eposint ist seit vielen Jahren ein durch Arkema zertifizierter "Approved Coating Applicator" für Rilsan und weitere Pulver von Arkema. Haben Sie Interesse? Eposint hat jahrzehntelange Erfahrung mit der Wirbelsintertechnik und verfügt über eine grosse Auswahl an Pulverwerkstoffen ( Polyethylen Polyamid und Wirbelsinterbäder unterschiedlicher Dimension. Funktionen: Elektroisolation Korrosionsschutz Verschleißschutz Branchen: Chemieindustrie Elektrotechnik Kunststoffverarbeitende Industrie Lebensmittelindustrie Medizintechnik (Life Sience) Pharmaindustrie Uhrenindustrie / Luxusgüter Weitere Branchen Sprechen Sie mit uns über Ihre Anforderungen, wir finden die ideale Lösung für Sie.
Prüfung der Anwendbarkeit und Benutzerfreundlichkeit

Prüfung der Anwendbarkeit und Benutzerfreundlichkeit

Ihrer Produkte. Es handelt sich dabei um eine Methode, mit welcher man gemeinsam mit den Anwendern des Produktes objektive Daten über die Anwendbarkeit und Benutzerfreundlichkeit einer Software oder eines Gebrauchsgegenstandes erhält. Bei einem Usability-Test wird die
2. Unvernetzte Situationsanalyse

2. Unvernetzte Situationsanalyse

Oft werden Unternehmen und Organisationen anhand bestimmter Kennzahlen gemessen. Dabei wird zumeist die vernetzte Struktur ausser Acht gelassen, so dass z.B. sich aus dem System ergebende Grenzwerte nicht berücksichtigt werden, da sie nicht erkannt werden.
bei der FTIR-Spektroskopie

bei der FTIR-Spektroskopie

Theorie, Methodenentwicklung & Praxisübungen · Optischer Aufbau FTIR Spektrometer · Typische Applikationen für FTIR · Methodenentwicklung · Wichtige Geräteparameter · Übersicht Probenaufbereitungstechniken Kursbeschrieb: Der heutige Stand der Infrarot Spektroskopie ermöglicht eine breite Anwendung dieser Technik. Noch immer wird die FTIR Technik vielfach unterschätzt, die Möglichkeiten werden nicht ausgenutzt. In diesem Kurs zeigen wir Ihnen den Aufbau eines modernen FTIR Spektrometers und welche Geräteparameter sich entscheidend auf Ihre Messung auswirken. Sie lernen ebenfalls, die richtigen Messzusätze auszuwählen und eine neue Methode zu erstellen. Anhand von praktischen Beispielen und Übungen am Gerät zeigen wir Ihnen typische Applikationen und die Leistungsfähigkeit und Einsatzmöglichkeiten der heutigen IR Spektroskopie. Kursziel: Nach diesem Kurs werden Sie in der Lage sein, Ihr FTIR Spektrometer optimal an Ihre Anwendung anzupassen, eigene Messmethoden zu erstellen und die entsprechenden SOP’s zu schreiben. Durch den Einsatz des richtigen Messzubehörs sparen Sie Zeit und Geld. Sie können genau abschätzen, welchen Nutzen FTIR Spektroskopie in Ihrem Analytiklabor oder bei der Prozesskontrolle haben könnte. Da Sie die Gerätetechnik besser kennen, wissen Sie, welche Prüfungen für die Gerätequalifizierung sinnvoll sind, können diese selbst durchführen und die Methoden intern validieren. Zielgruppen: Gruppenleiter, Laborleiter, Entscheidungsträger, Geräteverantwortliche, Laboranten, Anlagenbauer Vorkenntnisse: Keine besonderen Vorkenntnisse nötig (Chemische Grundkenntnisse)
Selbsttest

Selbsttest

zugelassene COVID-19 Antigen Schnelltest dient dem qualitativen Nachweis von SARS-CoV-2 Antigenen im vorderen Nasenabstrich und gibt innerhalb von 15 Minuten Auskunft, ob eine SARS-CoV-2 Infektion vorliegt oder nicht.
Hohlkehle

Hohlkehle

vorgefertigte Hohlkehlen aus Polymerbeton zur Verwendung als Sockelleiste / Wandanschlussleiste auf Balkonen, für Industriefußböden und Parkhäusern/-garagen POLYPROFIL®-Hohlkehlen werden aus einem hell eingefärbten Polymerbeton mit geringem spezifischen Gewicht hergestellt. Die Herstellung der Leisten erfolgt in Formen ohne Verwendung von Trennmitteln. POLYPROFIL®-Hohlkehlen lassen sich einfach verarbeiten und zeichnen sich durch ein geringes Gewicht bei hoher Druck- und Zugfestigkeit sowie äußerst geringe Wasseraufnahme aus. POLYPROFIL®-Hohlkehlen können mit Epoxid-, Polyurethan- oder Acrylatharzen beschichtet oder gestrichen werden. Hohlkehle 3/3: Hohlkehle 5/10 40 x 1,00 m / Karton: 10 x 1,00 m / Karton
Medikamente für die Allgemeinmedizin

Medikamente für die Allgemeinmedizin

Medikamente für die Allgemeinmedizin werden in der Regel von Haus- und Fachärzten für Allgemeinmedizin verschrieben. Dazu gehören unsere inhalativen Medikamente gegen Asthma und COPD, Antibiotika und Medikamente gegen Hautkrankheiten. Jeden Tag verbessern diese Arzneimittel die Gesundheit und das Leben von Millionen von Menschen auf der ganzen Welt. Seit mehr als 50 Jahren haben wir Millionen von Menschen mit Atemwegserkrankungen geholfen, leichter zu atmen, unter anderem mit den ersten Inhalatoren im Jahr 1969. Wir sind nach wie vor Branchenführer in der Atemwegsforschung. Wie wir Krankheiten vorbeugen und behandeln