Finden Sie schnell instruments für Ihr Unternehmen: 514 Ergebnisse

DIE GO-MO SERIE:  GO-MO 3 ROHGASAUFBEREITUNG

DIE GO-MO SERIE: GO-MO 3 ROHGASAUFBEREITUNG

Aufbereitung von Rohgas für eine kontinuierliche Gasanalyse (Prozessanalyse). Das Messgasaufbereitungssystem GO-MO 3 beinhaltet einen Permeationstrockner, einen Feinsichtfilter und eine Messgaspumpe. Die Gasmenge kann über einen Durchflussregler in einem Bereich von 50 bis 120 l/h frei wählbar eingestellt werden. Alle Bestandteile sind in einem Kunststoffgehäuse zur Wandmontage untergebracht. Die Anschlüsse für Messgaseingang und Messgasausgang befinden sich an der Oberseite des Gehäuses und sind mit EIN und AUS gekennzeichnet: Zum Netzanschluss 230 V AC befindet sich an der linken Seite ein Kaltgerätestecker mit Feinsicherung. Ein entsprechendes Anschlusskabel befindet sich im Zubehörpaket. FUNKTIONSWEISE DES PERMEATIONSTROCKNERS Hierbei handelt es sich um einen Schlauch aus einer selektiv durchlässigen Kunststoffmembrane, der von einem weiteren Schlauch umschlossen ist. In diesem äußeren Schlauch strömt ein Trägergas (i.a. Umgebungsluft) entgegen dem Messgasstrom. Die Wassermoleküle diffundieren durch den inneren Schlauch aus dem Messgas in das Trägergas und werden vom Trägergasstrom abtransportiert. Um diesen Wassertransport nicht zu stören oder gänzlich zum stoppen zu bringen, darf das Messgas keine Partikel, Aerosole oder Wasser in flüssiger Form (Tropfen) enthalten. Wir empfehlen daher die Messgasaufbereitung GO-MO 1 oder einen anderen Kühler vorzuschalten um dies sicher zu vermeiden. VORTEILE Kompaktes Design Kontinuierliche Aufbereitung Schnelle Betriebsbereitschaft innerhalb von ca. 10 Min. Zur Wandmontage geeignet OPTIONEN Tragevorrichtung für den mobilen Einsatz Trocknung: Permeationstrockner Netzanschluss: 230 V / 50 Hz über Kaltgerätestecker Leistungsaufnahme: max. 100 W Gaseingangstaupunkt: max. 5 °C Gasausgangstaupunkt: ca. -10° (je nach eingestellter Durchflussmenge) Durchfluss: ca. 50 - 120 l/h Umgebungstemperatur: +5 bis +30 °C Druck / Vakuum absolut: 1500 mbar / 600 mbar Anzahl Gaseingänge: 1 Anzahl Gasausgänge: 1 Anzahl Kondensatausgänge: 1 Betriebsbereit: innerhalb von ca. 10 Min. Gasanschlüsse: Schottverschraubungen PVDF DN 06/08 Kondensatableitung: über Membranpumpe gemischt mit Umgebungsluft Materialien der Gaswege: Glas, PVDF, PP, Viton und PVC Abmessungen L x T x H: ca. 360 x 254 x 111 mm Gewicht: ca. 4 kg Gerätesicherung: 1A, träge, 230 V, 5 x 20 mm Geräteschutzart: IP20 EN 60529 Elektrischer Gerätestandard: EN 61010 Gehäuse: Polystyrol, Farbe grau, RAL 7035 zur Wandmontage
ONLINE-ANALYSESYSTEM GO-MINI-ATC

ONLINE-ANALYSESYSTEM GO-MINI-ATC

Der GO-Mini-ATC ist ein Online-Analysesystem, der z.B. den Gesamt-Kohlenwasserstoff (Total Hydro Carbon)-Anteil in der Luft bestimmt. ONLINE-ANALYSESYSTEM Dieses Verfahren (Patent-Nr. 10 2009 017 932) kann zur Online-Messung von Kohlenwasserstoffen und anderen chemischen Bestandteilen in vielen Bereichen der Industrie und Forschung, z.B. im Reinstgas- und Atemgasbereich, chemische Industrie, insbesondere Petrochemie, Raumluftüberwachung, Klärtechnik usw. eingesetzt werden. Der GO-ATC (Air Total Carbon) dient zur Bestimmung des Gesamt-Kohlenwasserstoff-Anteils der Luft (optional auch weitere Gaskomponente). Zeitgleiche OnlineMessung von Methan zur Bestimmung des NMHC (None Methane Hydrocarbons)-Wertes. Anders als bei herkömmlichen Luftmessungen wird nicht der Absolutwert des organisch gebundenen Kohlenstoffs im Gasstrom ermittelt, sondern es wird das Delta aus den Konzentrationen von zwei Gasströmen gebildet. Die Bestimmung der Messwerte erfolgt durch Umrechnung der CO2–Konzentration in den Gasströmen. EINSATZGEBIETE Imissions- und Emissionsmessung Industrie, wie chemische- insbesondere petrochemische Industrie Forschungseinrichtungen im Reinstgas- und Atemgasbereich Klärtechnik im Abwasserbereich zur Methanolüberwachung Krankenhäuser zur Klimaanlagenüberwachung Luftfahrt zur Überwachung der Kabinenluft Chemische Labore Filterüberwachung Reinraumüberwachung GERÄTEOPTIONEN Vorrichtung zur Messung Absolut CO2 Vorrichtung zur Messung anderer Gase Software Weitere Optionen auf Anfrage VORTEILE Kontinuierliche Messwerterfassung Kein Verbrauchsmaterial Keine Reinstgase Niedrige Betriebskosten Auflösung 0,01 ppm Echte Online-Messung Keine Null-Luft / kein Brenngas Optional sind Fernwartung und Datenabfrage per LAN, WAN und GSM / UMTS möglich Automatische Kalibrierung Ungefährliche, einfache und umweltgerechte Handhabung NDIR Gasanalysator: Ultramat 6 Kleinster Messbereich GO-ATC: 0,01 ppm Zulässiger Wassergehalt Probengas: 8,00 ml/l / 500 ml/h pro Kanal Anzeige: LCD Grenzwerte: 4 Ausgangssignale: 0 / 2 / 4 – 20 mA / serielle Schnittstelle Betriebstemperatur Oxidationsofen: 1.000 °C Aufheizzeit: ca. 60 Min. 90%-Zeit: ca. 10 Sec. Gaskühler: GO-ATC Kühler Förderleistung Rohprobe: ca. 2 x 1 l min. Leistungsaufnahme: max. 350 W Netzanschluss: 230 V, 50 Hz Umgebungstemperatur: +5 bis +30 °C Abmessungen (HxBxT): ca. 450mm x 440mm x 320mm Gewicht: ca. 30 kg Auto. 0-Punkt Abgleich: Ja / Selbstkalibrierung Probenberührende Werkstoffe: Keramik, Glas, Viton, PVC, VA
DIE GO-PK SERIE  Messgasauf­bereitung

DIE GO-PK SERIE Messgasauf­bereitung

Systeme zur Kühlung des Gases, um den enthaltenen Wasserdampf abzuscheiden. Durch den Kühlvorgang mit unseren Geräten erhalten Sie genaue Messergebnisse und vermindern Auswaschungsverlust. Die Messgasaufbereitung vor einer Gasanalyse erfordert in den meisten Fällen neben anderen Maßnahmen auch eine Kühlung des Gases, um enthaltenen Wasserdampf abzuscheiden. Dabei ist es während des Kühlvorganges unabdingbar, Auswaschungsverluste an Zielsubstanzen der Gasanalyse zu verhindern, um möglichst genaue Messergebnisse zu erhalten. Anzustreben sind in der Praxis also vernachlässigbar geringe Absorptionen der Zielsubstanzen im ausfallenden Kondensat, die entweder idealerweise nicht messbar sind oder deren Größe sich innerhalb der Messtoleranzen der Analysengeräte bewegt. Dies erreicht man, indem der im Gas enthaltene Wasserdampf möglichst rasch und vollständig kondensiert und sofort aus dem weiteren Gasweg entfernt wird. Hierfür kommt der Geometrie des Kondensatabscheiders / Wärmetauschers im Kälteblock eines Kühlers besondere Bedeutung zu. In Abwandlung des Zyklon-Prinzips eines Feststoffabscheiders erzwingen die Form des Kontaktabscheiders und die daraus resultierende Gasführung in den Messgaskühlern GO-PK und GO-EPK den sofortigen Kontakt des Gases mit der kältesten Stelle der Wandung. Die schlagartige Abkühlung auf ca. 5 °C bewirkt den Ausfall der Hauptmenge des Kondensats im unteren Viertel des Wärmetauschers. Das Kondensat fließt nach unten ab, das Messgas wird nach oben weitergeführt. Die geringe innere Oberfläche und das kleine Volumen des patentierten Wärmetauschers tragen weiter dazu bei, Substanzverluste zu vermindern. Die Messgaskühler GO-PK und GO-EPK können mit einem bzw. zwei Wärmetauschern ausgestattet werden. Die günstigen Bauformen ermöglichen den einfachen Einbau in Analysenschränke, das Modell GO-EPK kann in 19“-Einschubgehäuse integriert werden. Die Messgaskühler GO-PK und GO-EPK sind auch wesentlicher Bestandteil der Kühlsysteme GO-PP, GO-PKK, GO-PKF und der Messgasaufbereitungssysteme GOT, GOE und GOM. VORTEILE Kompaktes Design Mit integrierten Zyklon-Wärmetauscher, pat. DPB 38 33 192 Innerhalb von ca. 10 Min. betriebsbereit Verhilft zu genauen Messergebnissen Auswaschungsverluste werden vermindert Zur Wandmontage geeignet (GO-PK) Zum Einbau in 19“-Einschubgehäuse (nur GO-EPK1) AUSSTATTUNGSVARIANTEN Halterung zur Wandmontage Transportschutz Tragbare Ausführung mit Griff (nicht bei GO-EPK 1) Wärmetauscher GO-PK1 und GO-EPK1: 1 Zyklonabschneider aus DURAN Wärmetauscher GO-PK2 und GO-EPK2: 2 Zyklonabschneider aus DURAN Volumen der Wärmetauscher GO-PK1 und GO-EPK1: 25 ml Volumen der Wärmetauscher GO-PK2 und GO-EPK2: 50 ml Ausgangstaupunkt: Werkseitig eingestellt auf + 5 °C, optischer Alarm bei Abweichung um + 3 °C Alarmausgang: potenzialfreier Temperatur-Alarmkontakt / Wechsler, max. 250 V/30 W Eingangstaupunkt GO-PK1: max. 65 °C Eingangstaupunkt GO-PK2: max. 70 °C Eingangstaupunkt GO-EPK1: max. 55 °C Eingangstaupunkt GO-EPK2: max. 60 °C Kühlleistung: ca. 110 kJ/h Durchfluss GO-PK1 und GO-EPK1: 50 - 150 l/h Durchfluss GO-PK2 und GO-EPK2: 50 - 250 l/h Umgebungstemperatur: +5 bis +30 °C Betriebsbereit: innerhalb ca. von 10 Minuten (abhängig von der Umgebungstemperatur) Peltier-Element: Funktionsüberwacht mit optischer Meldung Leistungsaufnahme: max. 100 VA Betriebsdruck: max. 4 bar Gasanschlüsse: Rohr 4 x 6 mm, Glas Kondensatablauf: Rohr 10 x 12 mm, Glas Abmessungen (ca.) GO-PK1 und GO-PK 2: L 250 x T 120 x H 210 mm Abmessungen (ca.) GO-EPK1: L 205 x T 155 x H 125 mm Abmessungen (ca.) GO-EPK2: L 225 x T 155 x H 125 mm Gewicht (ca.) GO-PK1: 6,0 kg Gewicht (ca.) GO-EPK1: 4,5 kg Gewicht (ca.) GO-PK2: 7 kg Gewicht (ca.) GO-EPK2: 5 kg Netzanschluss: 230 V, 50 Hz (andere auf Anfrage)
MESSGASKÜHLSYSTEM  GO-PKK 1

MESSGASKÜHLSYSTEM GO-PKK 1

Gerät zur Kühlung des Gases, um den enthaltenen Wasserdampf abzuscheiden. Vor einer Gasanalyse muss das Messgas gewöhnlich aufbereitet werden, dies erfordert in den meisten Fällen eine Kühlung des Gases, um enthaltenen Wasserdampf abzuscheiden. Zielsubstanzen der Analyse sind dabei in jedem Falle zu erhalten, was bei wasserlöslichen Gaskomponenten (z. B. SO2) besondere Maßnahmen erfordert. Kernstück der Messgastrocknung ist bei dem Kühlsystem GO-PKK jeweils ein Gaskühler, in dessen Zyklon-Wärmetauscher das Gas auf einen Taupunkt von 5 °C getrocknet wird. Der patentierte Wärmetauscher ermöglicht durch seine besondere Bauform (analog den Zyklon-Partikelabscheidern) die schlagartige Abkühlung des Gases, wonach das Messgas sofort vom Kondensat getrennt wird und im weiteren Gasweg keinen Kontakt mehr damit hat. So werden Auswaschungsverluste wirksam vermindert. Zusätzlich zum Kühler enthält das Kühlsystem bereits eine Pumpe zur Kondensatableitung sowie ein Auffanggefäß (1 l). Optional können verschiedene Filter das Kühlsystem weiter ergänzen, sowie Netzanschlussstecker und Temperaturregler für beheizte Gasentnahmesonden und beheizte Analysenleitungen installiert werden. Der transportable Koffer macht das Kühlsystem GO-PKK zum Gerät für den mobilen Einsatz. OPTIONEN Aerosolfilter Halterung für beheizte Leitung Netzstecker für beheizte Gasentnahmesonde und beheizte Analysenleitung Temperaturregler für beheizte Analysenleitung VORTEILE Kompaktes Design im transportablen Koffer Mit einem Zyklon-Wärmetauscher (pat. DPB 38 33 192) Schnelle Betriebsbereitschaft innerhalb von ca. 10 Min. Verhilft zu genauen Messergebnissen Auswaschungsverluste werden wirksam reduziert Stabiler Ausgangstaupunkt Andere Bauformen auf Anfrage möglich (GO-PP) Kühlung: GO-EPK 1 mit einem Zyklon-Wärmetauscher Volumen der Wärmetauscher: GO-EPK ca. 25 ml Ausgangstaupunkt: werkseitig eingestellt auf + 5 °C, optischer Alarm bei Abweichung um + 3 °C Alarmausgang: potenzialfreier Temperatur-Alarmkontakt / Wechsler, max. 250 V/30 W Eingangstaupunkt: GO-PKK 1 max. 55°C Kühlleistung: ca. 110 J/h Durchfluss: GO-PKK 1 50 - 150 l/h Umgebungstemperatur: + 5 bis + 30 °C Betriebsbereit: innerhalb ca. 10 min, (abhängig von der Umgebungstemperatur) Peltier-Element: funktionsüberwacht mit optischer Meldung Betriebsdruck: max. 4 bar Gasanschlüsse: Rohr 4 x 6 mm Kondensatableitung: Schlauchpumpe, Förderleistung 0,5 l/h in Sammelgefäß (1 l Inhalt) Leistungsaufnahme: max. 200 VA Netzanschluss: 230 V, 50 Hz Abmessungen: ca. L 450 x T 230 x H 310 mm Gewicht: ca. 9 kg
Vakuum-Controller, universelle Vakuum-Controller VD6 ist für den Schalttafeleinbau konstruiert

Vakuum-Controller, universelle Vakuum-Controller VD6 ist für den Schalttafeleinbau konstruiert

Praktische Vakuum-Controller mit bis zu 4 Kanälen. Analogline-Transmitter können mit den Vakuum-Controllern VD6 (1 Kanal, für 4-20 mA Transmitter) und VD12 (bis zu 2 Kanäle, für 0-10 V Transmitter) kombiniert werden. Mit den Controllern stehen weitere Funktionen und serielle Schnittstellen zur Verfügung. Für die Transmitter der Smartline-Serie sind die Modelle VD12 und VD14 verfügbar. Automatische Erkennung Die Vakuummessgeräte werden in Reihe mit dem 2- oder 4-Kanal-Controller verbunden. Dieser erkennt automatisch, welche Transmittertypen verbunden sind. VacuGraph™ Software Mit der VacuGraph™ Software (Lite-Version kostenlos) oder alternativ per Softwarebefehl können die Parameter des Controllers sowie der einzelnen Geräte (z. B. Einheiten, Ausgangskennlinien, Gasartkorrekturfaktoren, Schaltpunkte, usw.) einfach angepasst werden.
DIE GOT-SERIE  optimale Aufbereitung des zu analysierenden Gases

DIE GOT-SERIE optimale Aufbereitung des zu analysierenden Gases

Erzielen Sie eine optimale Aufbereitung des zu analysierenden Gases mit dem patentierten Messgasaufbereitungssystem GOT. Einwandfreie Messergebnisse in der Emissionsanalytik setzen eine optimale Aufbereitung des zu analysierenden Gases voraus. Erfahrungsgemäß reicht es nicht immeraus, Messgase durch Abkühlen auf ca. + 5 bis + 8 °C zu entfeuchten. Der restliche Wassergehalt von etwa 8 g/m3 ruft Schwankungen in den Messergebnissen der Gasanalysatoren hervor, die sich auch durch Einkalibrieren konstanter Querempfindlichkeiten nicht beseitigen lassen. Treten zudem aggressive Komponenten wie SO2 im Messgas auf, so sind bei ungenügender Entfeuchtung Schädigungen an den Analysatoren zu erwarten. Die patentierten Messgasaufbereitungssysteme der Serien GOT 100 und GOT 200 (DBP 37 16 350) bieten als Komplettlösung eine wirksame Kombination von Peltier-Kühler mit Zyklonwärmetauscher (pat. DPB 38 33 192), Filtern und Permeationstrockner, die das Messgas zuverlässig entstauben und trocknen. Zusätzlich werden Aerosole und Störkomponente zurückgehalten. Der damit zu erzielende Ausgangstaupunkt liegt unter -10 °C und stellt sicher, dass keine weitere Kondensation im Gasanalysator zu erwarten ist. Die Eignungsprüfung für die Emissionsüberwachung nach TA Luft und 13. BImSchV haben die Messgasaufbereitungssysteme der Serien GOT 100 und GOT 200 bestanden. VORTEILE Aerosole und Störkomponente werden zurückgehalten Zuverlässiges Entstauben und Trocknen des Messgases Ein Gerät für Kühlen, Filtern und Trocknen Übersichtliche Aufbereitung auf Montageplatte Schnelle Betriebsbereitschaft in ca. 10 Min. GERÄTEOPTIONEN Netzversorgungsstecker für beheizte Gasentnahmesonde Netzstecker und Temperaturregler für beheizte Analysenleitung Halterung für beheizte Analysenleitung zur Anbringung am Koffer Membranfilter mit Kondensatwächter zur Abschaltung der Messgaspumpe bei Feuchteeinbruch Bauform GO-M zum Einbau in Analyseschränke Kühler: Peltier-Kühler GO-PK 1 oder GO-PK 2 mit Zyklonwärmetauscher, funktionsüberwachtes Peltier-Element, potenzialfreien Temperaturalarmkontakt Umgebungstemperatur: max. 30 °C Kühltemperatur: +5 bis +8 °C geregelt Kühlleistung: 110 kJ/h Durchfluss GOT-100: 50 bis 120 l/h Durchfluss GOT-200: 50 bis 200 l/h Eingangstaupunkt: max. 70 °C Ausgangstaupunkt: < -10 °C, abhängig von Eingangstaupunkt und Durchfluss Kondensatabfluss GOT-100: 1 Pumpe Förderleistung 0,5 l/h im Sammelgefäß 1 l Kondensatabfluss GOT-200: 2 Pumpen Förderleistung je 0,5 l/h im Sammelgefäß 1 l Filter: Aerosolfilter, Membranfilter 10 µ Trocknung: Peltierelement und Permeationstrockner Gasanschlüsse: Schottverschraubungen PP 6 x 8 mm Volumen des Gasweges: ca. 200 ml Werkstoffe des Gasweges: Glas, PP, PVC, PTFE, PVDF Acryl Betriebsbereit: innerhalb von ca. 10 Minuten Leistungsaufnahme: max. 950 VA (je nach Länge der beheizten Leitung) Netzanschluß: 230 V, 50 Hz
MD-37 Serie

MD-37 Serie

Modularer Messkopf zur Verwendung mit MD-37, SRT, u.a. Zubehör, Si, SiLP, InGaAs, SiC, GaP Fotodioden, zur Verwendung mit Optometern und Signalverstärkern Kostengünstige Anwendungslösung Die MD-37-Serie ist als modularer Lichtdetektor konzipiert, der mit Optiken, Filtern und mechanischen Komponenten kombiniert werden kann, um komplette Lichterkennungsbaugruppen zu ermöglichen. Das mechanische Design macht die Montage oder das Hinzufügen anderer Komponenten einfach und flexibel. M30x1-Schnittstelle mit Gewinde Die MD-37-Serie verfügt über ein metrisches M30x1-Gewinde am vorderen Ende. Der M30x1 ist eine typische Gewindegröße in optischen Anwendungen. Große Auswahl an Photodiodentypen Die MD-37-Detektoren sind mit verschiedenen Photodioden vom ultravioletten bis zum nahen infraroten Wellenlängenbereich erhältlich. Benutzerdefinierte Photodioden-Konfiguration Ein universelles Leiterplattendesign ermöglicht es, andere Fotodioden und Fotodioden in MD-37-Detektorgehäuse einzubauen. Zubehör mit M30x1 Schnittstelle Für gängige Lichtmessanwendungen bietet die Gigahertz-Optik GmbH das Zubehör der SRT-M37-Serie mit M30x1-Gewinde-Schnittstelle für den Einsatz mit MD-37-Detektoren an. Rückführbare Kalibrierungen Eine optionale Kalibrierung ist über das Kalibrierlabor von Gigahertz-Optik für optische Strahlungsmengen erhältlich. MD-37-GP6: Spectral Response GaP 250 nm - 550 nm Sensing Area 6.25 mm² Sensing Area Size 2.5 mm x 2.5 mm Typical Responsivity 0.07 A/W @ 350 nm Imax 0.1 mA Temperature range (5 - 40) °C Cable Length 2 m Plug Type -1,-2,-4 MD-37-GAP-UV: Spectral Response GaAsP 200 nm - 680 nm Sensing Area 5.29 mm² Sensing Area Size 2.3 mm x2.3 mm Typical Responsivity 0.035 A/W @ 254 nm 0.17 A/W @ 560 nm 0.17 A/W @ 633 nm Imax 0.1 mA Temperature range (5 - 40) °C Cable Length 2 m Plug Type MD-37 Serie: MD-37-GAP5 (-2 Con.) Merkmal: Detector without Calibration
MD-37 Serie

MD-37 Serie

Modularer Messkopf zur Verwendung mit MD-37, SRT, u.a. Zubehör, Si, SiLP, InGaAs, SiC, GaP Fotodioden, zur Verwendung mit Optometern und Signalverstärkern Kostengünstige Anwendungslösung Die MD-37-Serie ist als modularer Lichtdetektor konzipiert, der mit Optiken, Filtern und mechanischen Komponenten kombiniert werden kann, um komplette Lichterkennungsbaugruppen zu ermöglichen. Das mechanische Design macht die Montage oder das Hinzufügen anderer Komponenten einfach und flexibel. M30x1-Schnittstelle mit Gewinde Die MD-37-Serie verfügt über ein metrisches M30x1-Gewinde am vorderen Ende. Der M30x1 ist eine typische Gewindegröße in optischen Anwendungen. Große Auswahl an Photodiodentypen Die MD-37-Detektoren sind mit verschiedenen Photodioden vom ultravioletten bis zum nahen infraroten Wellenlängenbereich erhältlich. Benutzerdefinierte Photodioden-Konfiguration Ein universelles Leiterplattendesign ermöglicht es, andere Fotodioden und Fotodioden in MD-37-Detektorgehäuse einzubauen. Zubehör mit M30x1 Schnittstelle Für gängige Lichtmessanwendungen bietet die Gigahertz-Optik GmbH das Zubehör der SRT-M37-Serie mit M30x1-Gewinde-Schnittstelle für den Einsatz mit MD-37-Detektoren an. Rückführbare Kalibrierungen Eine optionale Kalibrierung ist über das Kalibrierlabor von Gigahertz-Optik für optische Strahlungsmengen erhältlich. MD-37-GP6: Spectral Response GaP 250 nm - 550 nm Sensing Area 6.25 mm² Sensing Area Size 2.5 mm x 2.5 mm Typical Responsivity 0.07 A/W @ 350 nm Imax 0.1 mA Temperature range (5 - 40) °C Cable Length 2 m Plug Type -1,-2,-4 MD-37-GAP-UV: Spectral Response GaAsP 200 nm - 680 nm Sensing Area 5.29 mm² Sensing Area Size 2.3 mm x2.3 mm Typical Responsivity 0.035 A/W @ 254 nm 0.17 A/W @ 560 nm 0.17 A/W @ 633 nm Imax 0.1 mA Temperature range (5 - 40) °C Cable Length 2 m Plug Type MD-37 Serie: MD-37-GAP-VIS (-1 Con.) Merkmal: Detector without Calibration
MD-37 Serie

MD-37 Serie

Modularer Messkopf zur Verwendung mit MD-37, SRT, u.a. Zubehör, Si, SiLP, InGaAs, SiC, GaP Fotodioden, zur Verwendung mit Optometern und Signalverstärkern Kostengünstige Anwendungslösung Die MD-37-Serie ist als modularer Lichtdetektor konzipiert, der mit Optiken, Filtern und mechanischen Komponenten kombiniert werden kann, um komplette Lichterkennungsbaugruppen zu ermöglichen. Das mechanische Design macht die Montage oder das Hinzufügen anderer Komponenten einfach und flexibel. M30x1-Schnittstelle mit Gewinde Die MD-37-Serie verfügt über ein metrisches M30x1-Gewinde am vorderen Ende. Der M30x1 ist eine typische Gewindegröße in optischen Anwendungen. Große Auswahl an Photodiodentypen Die MD-37-Detektoren sind mit verschiedenen Photodioden vom ultravioletten bis zum nahen infraroten Wellenlängenbereich erhältlich. Benutzerdefinierte Photodioden-Konfiguration Ein universelles Leiterplattendesign ermöglicht es, andere Fotodioden und Fotodioden in MD-37-Detektorgehäuse einzubauen. Zubehör mit M30x1 Schnittstelle Für gängige Lichtmessanwendungen bietet die Gigahertz-Optik GmbH das Zubehör der SRT-M37-Serie mit M30x1-Gewinde-Schnittstelle für den Einsatz mit MD-37-Detektoren an. Rückführbare Kalibrierungen Eine optionale Kalibrierung ist über das Kalibrierlabor von Gigahertz-Optik für optische Strahlungsmengen erhältlich. MD-37-GP6: Spectral Response GaP 250 nm - 550 nm Sensing Area 6.25 mm² Sensing Area Size 2.5 mm x 2.5 mm Typical Responsivity 0.07 A/W @ 350 nm Imax 0.1 mA Temperature range (5 - 40) °C Cable Length 2 m Plug Type -1,-2,-4 MD-37-GAP-UV: Spectral Response GaAsP 200 nm - 680 nm Sensing Area 5.29 mm² Sensing Area Size 2.3 mm x2.3 mm Typical Responsivity 0.035 A/W @ 254 nm 0.17 A/W @ 560 nm 0.17 A/W @ 633 nm Imax 0.1 mA Temperature range (5 - 40) °C Cable Length 2 m Plug Type MD-37 Serie: MD-37-GAP-UV (-2 Con.) Merkmal: Detector without Calibration
MD-37 Serie

MD-37 Serie

Modularer Messkopf zur Verwendung mit MD-37, SRT, u.a. Zubehör, Si, SiLP, InGaAs, SiC, GaP Fotodioden, zur Verwendung mit Optometern und Signalverstärkern Kostengünstige Anwendungslösung Die MD-37-Serie ist als modularer Lichtdetektor konzipiert, der mit Optiken, Filtern und mechanischen Komponenten kombiniert werden kann, um komplette Lichterkennungsbaugruppen zu ermöglichen. Das mechanische Design macht die Montage oder das Hinzufügen anderer Komponenten einfach und flexibel. M30x1-Schnittstelle mit Gewinde Die MD-37-Serie verfügt über ein metrisches M30x1-Gewinde am vorderen Ende. Der M30x1 ist eine typische Gewindegröße in optischen Anwendungen. Große Auswahl an Photodiodentypen Die MD-37-Detektoren sind mit verschiedenen Photodioden vom ultravioletten bis zum nahen infraroten Wellenlängenbereich erhältlich. Benutzerdefinierte Photodioden-Konfiguration Ein universelles Leiterplattendesign ermöglicht es, andere Fotodioden und Fotodioden in MD-37-Detektorgehäuse einzubauen. Zubehör mit M30x1 Schnittstelle Für gängige Lichtmessanwendungen bietet die Gigahertz-Optik GmbH das Zubehör der SRT-M37-Serie mit M30x1-Gewinde-Schnittstelle für den Einsatz mit MD-37-Detektoren an. Rückführbare Kalibrierungen Eine optionale Kalibrierung ist über das Kalibrierlabor von Gigahertz-Optik für optische Strahlungsmengen erhältlich. MD-37-GP6: Spectral Response GaP 250 nm - 550 nm Sensing Area 6.25 mm² Sensing Area Size 2.5 mm x 2.5 mm Typical Responsivity 0.07 A/W @ 350 nm Imax 0.1 mA Temperature range (5 - 40) °C Cable Length 2 m Plug Type -1,-2,-4 MD-37-GAP-UV: Spectral Response GaAsP 200 nm - 680 nm Sensing Area 5.29 mm² Sensing Area Size 2.3 mm x2.3 mm Typical Responsivity 0.035 A/W @ 254 nm 0.17 A/W @ 560 nm 0.17 A/W @ 633 nm Imax 0.1 mA Temperature range (5 - 40) °C Cable Length 2 m Plug Type MD-37 Serie: MD-37-GP6 (-1 Con.) Merkmal: Detector without Calibration
MD-37 Serie

MD-37 Serie

Modularer Messkopf zur Verwendung mit MD-37, SRT, u.a. Zubehör, Si, SiLP, InGaAs, SiC, GaP Fotodioden, zur Verwendung mit Optometern und Signalverstärkern Kostengünstige Anwendungslösung Die MD-37-Serie ist als modularer Lichtdetektor konzipiert, der mit Optiken, Filtern und mechanischen Komponenten kombiniert werden kann, um komplette Lichterkennungsbaugruppen zu ermöglichen. Das mechanische Design macht die Montage oder das Hinzufügen anderer Komponenten einfach und flexibel. M30x1-Schnittstelle mit Gewinde Die MD-37-Serie verfügt über ein metrisches M30x1-Gewinde am vorderen Ende. Der M30x1 ist eine typische Gewindegröße in optischen Anwendungen. Große Auswahl an Photodiodentypen Die MD-37-Detektoren sind mit verschiedenen Photodioden vom ultravioletten bis zum nahen infraroten Wellenlängenbereich erhältlich. Benutzerdefinierte Photodioden-Konfiguration Ein universelles Leiterplattendesign ermöglicht es, andere Fotodioden und Fotodioden in MD-37-Detektorgehäuse einzubauen. Zubehör mit M30x1 Schnittstelle Für gängige Lichtmessanwendungen bietet die Gigahertz-Optik GmbH das Zubehör der SRT-M37-Serie mit M30x1-Gewinde-Schnittstelle für den Einsatz mit MD-37-Detektoren an. Rückführbare Kalibrierungen Eine optionale Kalibrierung ist über das Kalibrierlabor von Gigahertz-Optik für optische Strahlungsmengen erhältlich. MD-37-GP6: Spectral Response GaP 250 nm - 550 nm Sensing Area 6.25 mm² Sensing Area Size 2.5 mm x 2.5 mm Typical Responsivity 0.07 A/W @ 350 nm Imax 0.1 mA Temperature range (5 - 40) °C Cable Length 2 m Plug Type -1,-2,-4 MD-37-GAP-UV: Spectral Response GaAsP 200 nm - 680 nm Sensing Area 5.29 mm² Sensing Area Size 2.3 mm x2.3 mm Typical Responsivity 0.035 A/W @ 254 nm 0.17 A/W @ 560 nm 0.17 A/W @ 633 nm Imax 0.1 mA Temperature range (5 - 40) °C Cable Length 2 m Plug Type MD-37 Serie: MD-37-GP6 (-2 Con.) Merkmal: Detector without Calibration
MD-37 Serie

MD-37 Serie

Modularer Messkopf zur Verwendung mit MD-37, SRT, u.a. Zubehör, Si, SiLP, InGaAs, SiC, GaP Fotodioden, zur Verwendung mit Optometern und Signalverstärkern Kostengünstige Anwendungslösung Die MD-37-Serie ist als modularer Lichtdetektor konzipiert, der mit Optiken, Filtern und mechanischen Komponenten kombiniert werden kann, um komplette Lichterkennungsbaugruppen zu ermöglichen. Das mechanische Design macht die Montage oder das Hinzufügen anderer Komponenten einfach und flexibel. M30x1-Schnittstelle mit Gewinde Die MD-37-Serie verfügt über ein metrisches M30x1-Gewinde am vorderen Ende. Der M30x1 ist eine typische Gewindegröße in optischen Anwendungen. Große Auswahl an Photodiodentypen Die MD-37-Detektoren sind mit verschiedenen Photodioden vom ultravioletten bis zum nahen infraroten Wellenlängenbereich erhältlich. Benutzerdefinierte Photodioden-Konfiguration Ein universelles Leiterplattendesign ermöglicht es, andere Fotodioden und Fotodioden in MD-37-Detektorgehäuse einzubauen. Zubehör mit M30x1 Schnittstelle Für gängige Lichtmessanwendungen bietet die Gigahertz-Optik GmbH das Zubehör der SRT-M37-Serie mit M30x1-Gewinde-Schnittstelle für den Einsatz mit MD-37-Detektoren an. Rückführbare Kalibrierungen Eine optionale Kalibrierung ist über das Kalibrierlabor von Gigahertz-Optik für optische Strahlungsmengen erhältlich. MD-37-GP6: Spectral Response GaP 250 nm - 550 nm Sensing Area 6.25 mm² Sensing Area Size 2.5 mm x 2.5 mm Typical Responsivity 0.07 A/W @ 350 nm Imax 0.1 mA Temperature range (5 - 40) °C Cable Length 2 m Plug Type -1,-2,-4 MD-37-GAP-UV: Spectral Response GaAsP 200 nm - 680 nm Sensing Area 5.29 mm² Sensing Area Size 2.3 mm x2.3 mm Typical Responsivity 0.035 A/W @ 254 nm 0.17 A/W @ 560 nm 0.17 A/W @ 633 nm Imax 0.1 mA Temperature range (5 - 40) °C Cable Length 2 m Plug Type MD-37 Serie: MD-37-GAP-VIS (-2 Con.) Merkmal: Detector without Calibration
P-9801

P-9801

Features: Echtes Acht-Kanal-Messgerät mit je einem Signalverstärker und Sample & Hold ADC pro Messkanal zur zeitgleichen Erfassung der Messsignale. RS232- und IEEE488-Schnittstelle. Die P-9801 Optometerserie ist eine der leistungsfähigsten Lichtmessgeräte-Serien auf dem Markt für Mehrkanalmessungen Für diese Anwendungen biete das P-9801 folgende Eigenschaften: Das leistungsfähigste und schnellste Mehrkanal-Optometer zeitgleiche Messung von allen acht Detektorkanälen großer linearer Dynamikbereich kurze Anstiegszeit mit variabler Abtastrate schnelles Mehrkanal Datenloggen Manueller oder Schnittstellenbetrieb RS232 und IEEE488 Schnittstelle Leistungsfähiger 16 bit Mikroprozessor mit großem Speicher Triggereingang mit Pre-Triggerfunktion Echte 8-Kanal Messung Das P-9801 ist ein auf echten 8 Kanälen aufgebautes Optometer. D.h. es sind acht Strom zu Spannungsverstärker (ohne Multiplexing) und acht 12 bit hoch-lineare analog zu digital Konverter eingebaut. Dies ermöglicht es alle acht Kanäle zeitgleich zu messen. 10 Größenordnungen Dynamik in der Strommessung Jeder Kanal bietet eine Dynamik von 0.1 pA bis 2 mA an. Deser große Bereich deckt fast alle Photodioden auf dem Markt ab und ermöglicht somit fast alle möglichen Lichtmessungs-Szenarien. Der große Dynamikbereich wird mit 8 Verstärkerstufen bewerkstelligt welche einzeln mit einer Präzession besser 0,2 % kalibriert sind. Einstellbare Messzeit Die schnelle Abtastrate des P-9801 ADC ermöglicht eine einstellbare Messzeit von 1 ms bis zu 999 s. Diese wird durch eine Mittelung von 100 µs Messpunkten über die Messzeit bewerkstelligt. Die Vorgehensweise der Mittelung erlaubt schnelle Datenlogger-Messungen genutzt bei Peak zu Peak, Kurzpuls und weiteren Messmodi. Metallgehäuse für die Anwendung in stark elektromagnetisch belasteten Umfeld Für die Integration des P-9801 in Applikationen bei starken elektromagnetischen Bedingungen, wie z.B. bei Hochleistungsbogenlampen, bietet das P-9801 ein Metallgehäuse mit hervorragend EMV Schutzeigenschaften. Zudem besteht die Möglichkeit einer Einbauversion des P-9801. Drei verschiedene Versionen für die Anwendung in Hochgeschwindigkeitsapplikationen P-9801-V01 bietet eine verstärkungsabhängige Anstiegszeit von 2 ms bis 10 ms für universelle optische Messzwecke. P-9801-V02 bietet eine verstärkungsunabhängige Anstiegszeit für die Messung der Pulsenergie von kurzen Blitzen. Dies mittels einer Pulsstreckmethode. P-9801-V03 bietet eine schnelle Anstiegszeit von 1 ms für hochgeschwindigkeits Datenlogger-Messungen sowie Trigger und Pre-Trigger Funktion. Messbereichseigenschaften mit Detektoren Der Messbereich des Optometers kombiniert mit einem Detektor wird gemäß der Messbereichsangaben des Optometers und der Empfindlichkeit des Detektors bestimmt. Offset-Signal = maximale Auflösung = Strom Offset-Signal / Detektorempfindlichkeit Beispiel: 0.1 pA (0.1E-12 A) / 3 nA/(mW/cm²) (Bestrahlungsstärke-Detektor) = 0.33 nW/cm² minimal messbare Bestrahlungsstärke = Offset-Signal · SNR Faktor Beispiel: 0.33 nW/cm² * 50 = 17 nW/cm² maximal messbare Bestrahlungsstärke*: max. Signal Strom Detektor / Detektorempfindlichkeit Beispiel: 1 mA (1E-3 A) / 3 nA/(mW/cm²) = 333333 W/cm² Anzeigebereich = Offset Signal bis maximal messbares Signal Beispiel: 0.33 nW/cm² bis 333333 W/cm² Messbereich: = minimal messbare Bestrahlungsstärke bis maximal messbare Bestrahlungsstärke Beispiel: 17 nW/cm² bis 333333 W/cm² *) Die Maximal messbare Strahlung kann auch durch beispielsweise thermische Einflüsse eingeschränkt sein. Dies ist vom Anwender zu beachten. Hauptmerkmale: u.a. zeitgleiche Messung von allen acht Detektorkanälen, großer linearer Dynamikbereich, kurze Anstiegszeit mit variabler Abtastrate, schnelles Mehrkanal Datenloggen, Manueller- oder Schnittstellenbetrieb, leistungsfähiger 16 bit Mikroprozessor Messbereich: abhängig vom Detektor, Dynamik von 8 verfügbaren Bereichen: 2.000 mA bis 0,1 pA manuell oder Autorange Spannungsversorgung: (6.5 – 7.5) VDC / 1A Stecker: 5,5 / 2,5 mm / 10 mm Detektorschnittstelle: 8 BNC Buchse für 8 Detektoren Hinweis: Bei der Farbmessung benötigt ein Messkopf 4 Kanäle, d.h. es sind zwei Farbmesskanäle möglich 2 Triggerung: CMOS Level (0/5V) / BNC Buchse, Interner Pull-Up Widerstand 10 k bis + 5 V Analogausgang: ± 2.5 V (max. + - 5 V), Ri = 100 R, max. Strom = 2 mA, BNC Buchse CW Integrationszeit: 1 ms – 999,999 s Pulsintegrationszeit: 1 ms – 999,999 s Puls Pre-Trigger Zeit: 0 ms – 400 ms
TR-9600

TR-9600

Schnelles Datenlogger Optometer zur Pulsverlauf-Aufzeichnung Digitaler Hochgeschwindigkeits-Datensammler für die Lichtpulsanalyse Das TR-9600 Optometer ist speziell für die Analyse von Einzelpulsen, Pulszyklen oder frequenzmodulierten Signalen entwickelt worden. Komplette Analyse von Pulsform und Pulsparametern Pulsform Spitzenleistung in absoluten radiometrischen oder photometrischen Größen (abhängig vom Detektor) Pulsbreite Einzelpulsenergie Puls Repetitionsrate 100 ns oder 1 µs Anstiegszeit-Verstärker Der TR-9600 analog Signalverstärker bietet eine Anstiegszeit von 1 µs (TR-9600-1) oder 100 ns (TR-9600-2 *). Die Verstärkungsstufen des Strom zu Spannungsverstärkers ist in 10 Stufen für die bestmögliche Signal zu Rauschanpassung. 10 Msamples/s Ein hochgeschwindigkeits analog zu digital Wandler (ADC) digitalisiert das analoge Signal mit einer Abtastrate von bis zu 10 Msamples/s für hochaufgelöste Messungen. Seine 12 Bit Auflösung ist hierbei höher wie die von vielen Oszilloskopen (8 Bit). Schneller Transientenrekorder mit 100 ns Abtastrate und Pre-Trigger Funktion Die digitalen Daten werden in einem Schnellen Speicherbaustein hinterlegt welches als Transientenrekorder ausgelegt ist um die 10Msamples/s speichern zu können. Die Pre-Triggerfunktion des Transientenrekorders erlaubt hierbei das Speichern von Messungen bereits vor dem Triggerevent. Es können bis zu 2 Millionen Datenpunkte im Gerät gespeichert werden. Betrieb per Schnittstelle via RS232 oder IEEE488 und Trigger I/O Schnittstelle Das Messgerät kann per RS232 und IEEE488 Schnittstelle betrieben werden. Zudem bestehen BNC Anschlüsse für Trigger Ein- und ausgang (TTL Signal). Software Das TR-9600 kann mit der S-TR9600 betrieben werden, einer Windows basierten Software. Diese bietet alle nötigen Messgerät Steuer- und Auswertefunktionen. Zudem kann das S-SDK-TR9600 Programmiertoolkit für die Integration in eigene Softwareapplikationen optional erworben werden. Messbereich abhängig vom Detektor Der Messbereich des TR-9600 Optometer kombiniert mit einem Detektor wird gemäß der Messbereichsangaben des Optometers und der Empfindlichkeit des Detektors bestimmt. Beispiel: Bestrahlungsstärke-Detektor mit einer typischen Empfindlichkeit von 3 nA/(W/cm2): Maximal messbare Bestrahlungsstärke (Messbereich 0): 2 mA / 3 nA/(W/cm2) = 6,666,666 W/cm2 ** Rauschäquivalente Bestrahlungsstärke (Messbereich 9): 10 mV = 0.3 nA = 10 W/cm2 Minimal messbare Bestrahlungsstärke (Messbereich 0): 10 W/cm² * 50 (vom Anwender zu definierende SNR) = 500 W/cm² Limitierter Dynamikbereich und Kapazitätslimit Bedingt durch die große Bandbreite des TR-9600 ist das Rauschlevel etwas höher wie bei anderen Optometern, dies limitiert den Dynamikbereich. Folge dessen müssen Detektoren welche mit dem TR-9600 betrieben werden sorgfältig in Sachen Empfindlichkeit und Rauschen geprüft werden. Die Kapazität des Detektors und die der Detektorleitung müssen berücksichtigt werden um keine Verformung bzw. Beeinflussung der Pulsform zu erhalten. Um diese Effekte zu reduzieren empfehlen wir eine Kabellänge von 0,2 m für Detektoren mit großer Kapazität. Bei Fragen können sie gerne unser Verkaufsteam kontaktieren. * Das TR-9600-2 mit100 ns Anstiegszeit limitiert die Freiheit in der Detektorwahl, da die Kapazität des Detektors zum Gerät passen muss. Zudem ist das Rauschen durch die erhöhte Bandbreite stärker ausgeprägt. ** Die Maximal messbare Strahlung kann auch durch beispielsweise thermische Einflüsse eingeschränkt sein. Dies ist vom Anwender zu beachten. Kurzbeschreibung: Das TR-9600 Optometer ist speziell als Datensammler für die Analyse von Einzelpulsen, Pulszyklen oder frequenzmodulierten Signalen entwickelt worden. mögliche Anwendungen: Analyse von Einzelpulsen, Pulszyklen oder frequenzmodulierten Signalen Messbereich: 1 µs Anstiegszeit Verstärker: 10 (1 mA/V – 30 nA/V) 100 ns Anstiegszeit Verstärker: 4 (300 µA/V – 10 µA/V) Hauptmerkmale: Pulsform, Spitzenleistung in absoluten radiometrischen oder photometrischen Größen (abhängig vom Detektor), Pulsbreite, Einzelpulsenergie, Puls Repetitionsrate
Hei-VAP Value Rotationsverdampfer

Hei-VAP Value Rotationsverdampfer

Intelligent Destillieren mit den Rotationsverdampfern von Heidolph: Die Hei-VAP Value Rotationsverdampfer mit Handlift bieten Einstellmöglichkeiten für alle Standardanwendungen. Hei-VAP Value Handlift-Modell mit transparentem, kunststoffbeschichtetem G6 Vertikalkühler für Rückflussdestillationen • Direkte Steuerung von Rotationsgeschwindigkeit und Heizbadtemperatur durch Drehknöpfe am Bedienpanel • Stellen Sie bequem den gewünschten Neigungswinkel des Verdampferkolbens nach Ihren Anforderungen ein • Nutzen Sie den Höhenanschlag zur Begrenzung der Eintauchtiefe des Verdampferkolbens • Die patentierte Kolbenklemme Easy-Clip ermöglicht ein einfaches Abnehmen der Kolben durch die integrierte Abdrück-Funktion • Zu Ihrem Schutz ist das abnehmbare Bedienpanel außerhalb des Gefahrenbereiches platziert. Für die Anwendung unter geschlossenen Abzugshauben kann das Bedienpanel einfach entnommen werden. So können Sie jederzeit und geschützt in den laufenden Prozess eingreifen • Hei-VAP Value Handlift-Modell mit transparentem, kunststoffbeschichtetem G1 Diagonalkühler Intelligent Destillieren mit den Rotationsverdampfern von Heidolph: Schutz vor ungewolltem Aufheizen und Wassermangel im Heizbad, bequeme Bedienung dank des abnehmbaren Bedienpanels und jahrelanger Dauereinsatz von Vakuumdichtung und Dampfdurchführung! Handlift: 10 - 280 rpm Anzeige Heizbadtemperatur: Skala / digital Einstellgenauigkeit Heizbad: ±1 °C Heizleistung: Heizleistung Übertemperaturschutz: Abschaltung bei 5 °C über Solltemperatur (mit seperatem PT 1000) Volumen Heizbad: 4,5 l Max. Größe Verdampferkolben: 5 l Anschlussleistung: 1.400 W 1.400 W: 1.400 cm² Kühlfläche XL Kühler: 2.200 cm² Liftvariante: Handlift-Modell Glassatz / Kühler: G6 Vertikalkühler (beschichtet)
SPALTSIEBFILTERPATRONE  GO-SFP

SPALTSIEBFILTERPATRONE GO-SFP

Filter zur kontinuierlichen Entnahme einer Probe aus einem Tauchbecken oder einem Hauptwasserstrom. Die Spaltsiebfilterpatrone wird zur kontinuierlichen Entnahme eines filtrierten Teilstroms aus einem außen vorbeifließenden Hauptwasserstrom eingesetzt, z. B. für die Probenentnahme aus einem Überlaufgefäß. Die Filterspalten sind radial angeordnet. Die Hauptwasserströmung bzw. Turbulenzen sorgen mit einem gewissen Reinigungseffekt für lange Standzeiten des Filters. So wird auf einfache und äußerst kostengünstige Weise eine ausreichende Filtratmenge für nachgeschaltete Analysengeräte gewonnen. Die Spaltsiebfilterpatrone GO-SFP wird bei Bedarf manuell mechanisch gereinigt. VORTEILE Einfache Handhabung Schnelle manuelle mechanische Reinigung Kostengünstige Version zur Probennahme Filterpatrone: Radiale Außenspalten Spaltweite: 50 µm Probenanschluss: Schlauchtülle DN 04 aus PP Andere Materialien möglich Abmessungen: ca. L 85 x Ø 35 mm Gewicht: ca. 200 g
Laserstrahlschweißen im Vakuum zechnet sich durch höchste Genauigkeit und Effizienz aus

Laserstrahlschweißen im Vakuum zechnet sich durch höchste Genauigkeit und Effizienz aus

Die Laserstrahlschweißtechnologien von Thyracont bieten innovative Ansätze zur Verbindung von Materialien unter Vakuumbedingungen. Diese Technologien ermöglichen eine präzise und saubere Schweißnaht, die für viele industrielle Anwendungen entscheidend ist. Sie sind ideal für Anwendungen in der Automobil- und Luftfahrtindustrie, wo hohe Präzision und Qualität erforderlich sind. Dank ihrer fortschrittlichen Vakuumtechnologie bieten die Lösungen von Thyracont eine hohe Zuverlässigkeit und Leistung. Sie sind einfach zu bedienen und können problemlos in bestehende Produktionslinien integriert werden. Diese Technologien sind somit die perfekte Wahl für Unternehmen, die auf der Suche nach effektiven Lösungen für das Laserstrahlschweißen im Vakuum sind.
Hei-FLOW Value 01 Peristaltikpumpe

Hei-FLOW Value 01 Peristaltikpumpe

Für Standardanwendungen und zum Fördern. Die Fördermengen mit Einkanalpumpenköpfen liegt bei 0,83 - 861 ml/min. Schlauchpumpe für Fördermengen mit Einkanalpumpenköpfen von 0,83 - 861 ml/min. • Für einen niedrigen Drehzahlbereich von 10 – 120 U/min • Dieser Pumpenantrieb kann mit allen Mehrkanalpumpenköpfen betrieben werden • Die Fördermengen mit Mehrkanalpumpenköpfen liegen zwischen 0,005 und 364 ml/min • Rüsten Sie Ihren vorhandenen Pumpenantrieb Hei-FLOW Value 01 auf Mehrkanalbetrieb um Drehzahlbereiche: 10 - 120 U/Min Regelgenauigkeit Motor: ±2 % Drehrichtung umschaltbar: rechts / links Fördermengen Einkanalpumpen: 0,83 – 861 ml/min Fördermengen Mehrkanalpumpen: 0,005 – 364 ml/min Fördermengengenauigkeit (Wasser ohne Gegendruck): ±5 % Schutzart DIN EN 60529: IP 55
BEHEIZTE MESSGASLEITUNG  GO-H 300 A

BEHEIZTE MESSGASLEITUNG GO-H 300 A

Beheizte Messgasleitung mit flexibler Schlauchleitung zum Erhalt der Gastemperatur, sowie zur Vermeidung von Kondensatbildung. Um Messgase von der Entnahmestelle zum Messgasaufbereitungssystem transportieren zu können, werden bevorzugt flexible Schlauchleitungen eingesetzt, die zum Erhalt der Gastemperatur und zur Vermeidung von Kondensatbildung beheizt sind. BESCHREIBUNG Der medienführende Schlauch (mit auswechselbarer PTFE-Seele) ist von einem feuchtigkeitsgeschützten Heizleiter umwickelt, thermisch isoliert und von einem Außenschutzgeflecht aus Polyamid umgeben. Unter dem Heizleiter ist der Temperaturfühler (Pt100) angebracht. Ein Ende der beheizten Messgasleitung ist mit einer Hartkappe aus glasfaserverstärktem Kunststoff konfektioniert, das andere Ende mit einer PG36-Verschraubung abgeschlossen, zur festen Anbringung an einem Messgasaufbereitungssystem oder einem Analysenschrank. Die Netz- und Fühlerleitung ist an dem Ende mit der PG36-Verschraubung herausgeführt. Die Temperaturregelung erfolgt über einen externen Temperaturregler, der auch in einem Messgasaufbereitungssystem eingebaut sein kann. VORTEILE Vermeidung von Kondensatbildung Auswechselbare PTFE-Seele Feuchtigkeitsgeschütze, thermisch isolierte und aus Polyamid umgebene Heizleiter OPTIONEN Mitgeführte Netzversorgungsleitung für beheizte Gasentnahmesonde Mitgeführte Prüfgasgasseele DN 02 Außenschutzgeflecht aus Stahl oder VA Ringwellschlauch aus PA oder VA Regeltemperatur: Bis max. 200 °C (andere auf Anfrage) Grundschlauch: PTFE Seele: DN 04 oder DN 06 Gasanschluss: Seele 100 mm überstehend Heizleiter: Aufbau nach DIN, feuchtigkeitsgeschützt mit Schutzgeflecht bis 250 °C Temperaturfühler: Pt100 Max. Länge: 50 m Leistungsaufnahme: ca. 100 Watt/Meter Zuleitung: 3 m mit 7-pol. Rundstecker Netz: 230 V, 50 Hz Prüfzeichen: SEV TP 20 B/3 A. 1982
BIOGASMONITOR  GO-BGM

BIOGASMONITOR GO-BGM

Messgasaufbereitung und Gasanalyse in einem kompakten Gehäuse. Für viele Überwachungsaufgaben eine ideale Lösung Typische Anwendung findet der Gasmonitor GO-BGM in Kläranlagen und Deponien zur Gärgasanalyse, in der Emissionsüberwachung, in der Sicherheits- und Prozessüberwachung, zur Feuerungsoptimierung, Luftüberwachung in Fruchtlagern, Gärkellern u. a. m. Für Messungen nach 13. BImSchV und TA Luft sind TÜV-zugelassene Versionen verfügbar. Der Gasmonitor GO-BGM besteht aus dem Messgaskühlsystem GO-PP1 und einem Infrarot-Gasdetektor. Im Messgaskühlsystem GO-PP wird das Probengas aufbereitet (gekühlt und ggf. gefiltert) und danach dem Gasanalysator zugeführt. Eine Peristaltikpumpe transportiert das Kondensat in einen Sammelbehälter. Der Infrarotdetektor bietet die Möglichkeit, gleichzeitig ein bis drei infrarotaktive Gase (wie CO, CO2, NO, SO2, CH4) permanent zu erfassen. Zusätzlich kann mit einem elektrochemischen Sensor Sauerstoff O2 bestimmt werden. Trotz seiner kompakten Bauform kann der Gasmonitor GO-BGM mit zahlreichen Optionen ausgestattet werden, z.B. Filtern und Kondensatwächter zur Abschaltung der Messgaspumpe bei Feuchte-Einbruch. EINSATZGEBIETE Feuerungsoptimierung von Kleinkesseln Überwachung der Abgaskonzentrationen von Feuerungsanlagen aller Brennstoffarten Raumluftüberwachung Luftüberwachung in Fruchtlagern, Gewächshäusern, Gärkellern und Lagerhäusern Überwachung von Prozessführungen Kläranlagen VORTEILE Kompaktes Design Messung von bis zu vier Gaskomponenten gleichzeitig Maximal drei infrarotaktive Gase Elektrochemische Sauerstoffmesszelle Kundenspezifische Erweiterungen möglich OPTIONEN Aerosolfilter Membranfilter Membranfilter mit Kondensatwächter Netzstecker für beheizte Gasentnahmesonde und beheizte Analysenleitung Temperaturregler für beheizte Analysenleitung Halterung für beheizte Analysenleitung Messkomponenten: CO2 , CH4 , CO, NO, SO2 , O2 Messprinzip: NDIR-Detektion, für O2 elektrochemischer Sens Betriebsbereit: Innerhalb von ca. 10 min (abhängig von der Umgebungstemperatur) Gasanschlüsse: Rohrstutzen 6 mm AD Gehäuse: Wandgehäuse, Stahl lackiert Abmessungen: ca. H 610 x B 600 x T 420 mm Schutzart: IP 54 Gewicht: ca. 48,5 kg Leistungsaufnahme: ca. 250 VA Netz: 230 V, 50 Hz
Aufdampfanlagen, Bayard Alpert mit durchbrennsicherem, yttriertem Iridium-Doppelfilament

Aufdampfanlagen, Bayard Alpert mit durchbrennsicherem, yttriertem Iridium-Doppelfilament

Vorteile im Überblick Großer Messbereich durch Kombinationssensor Pirani/ Bayard Alpert Bayard Alpert mit durchbrennsicherem, yttriertem Iridium-Doppelfilament Langzeitversuche bestätigten hervorragende Lebensdauer: bis zu 100.000 Schockbelüftungszyklen Die Aufdampfanlagen von Thyracont bieten innovative Ansätze zur Beschichtung von Materialien mit dünnen Schichten. Diese Anlagen ermöglichen eine präzise Kontrolle über die Schichtdicke und -qualität, was für viele industrielle Anwendungen entscheidend ist. Sie sind ideal für Anwendungen in der Elektronik- und Optikindustrie, wo hohe Präzision und Qualität erforderlich sind. Dank ihrer fortschrittlichen Vakuumtechnologie bieten die Lösungen von Thyracont eine hohe Zuverlässigkeit und Leistung. Sie sind einfach zu bedienen und können problemlos in bestehende Produktionslinien integriert werden. Diese Anlagen sind somit die perfekte Wahl für Unternehmen, die auf der Suche nach effektiven Lösungen für das Aufdampfen von Materialien sind.
GASENTNAHMESONDE  GO-ES 250

GASENTNAHMESONDE GO-ES 250

Komplett beheizte Gasentnahmesonde mit innen liegendem Grobstaubfilter. Bereits die Entnahme eines Messgases aus einem Hauptgasstrom erfordert besondere Sorgfalt, um die Genauigkeit der Messergebnisse nicht zu gefährden. Das Messgas soll primär unverfälscht, aber bereits weitgehend von Partikeln befreit, entnommen werden, um Verstopfungen in den weiteren Gaswegen zu vermeiden. Dabei kommt dem Durchtritt des Gases durch die Wand des Kamins oder Fuchses besondere Bedeutung zu. Hier wird u. U. der Taupunkt des Messgases unterschritten, es bildet sich Kondensat. Diese Kondensatbildung ist unerwünscht, weil sich im Kondensat zum einen Messkomponenten aus dem Messgas lösen können und damit als Zielsubstanzen mengenmäßig der quantitativen Analyse verloren gehen. Zum anderen beginnt damit das Zusetzen des Gasweges, weil sich Feinstaub mit dem Kondensat verbindet. Mit dem Beheizen der Gaswege wirkt man dieser Kondensatbildung entgegen. Die Gasentnahmesonde GO-ES 250 bietet hier den Vorteil, nicht nur den außerhalb des Kamins liegenden Sondenkopf zu beheizen, sondern auch das daran anschließende Sondenrohr, das teilweise außerhalb und teilweise innerhalb des temperierten Kamins liegt, über dem Säuretaupunkt zu temperieren und so die kritische Passage zu überbrücken. Vom Sondenkopf weg kann eine beheizte Messgasleitung als weiteres Transportmedium eingesetzt werden, eine Halterung dafür ist bereits vorgesehen. Der an der Sondenspitze montierte Filter ist durch seine großzügige Dimensionierung und durch seine Lage im heißen Rauchgas nahezu wartungsfrei. Durch wahlweisen Einsatz oder Kombination von Verlängerungsstücken und / oder von Filterträgern sind außerordentlich variable Entnahmetiefen erreichbar. Der Einsatz verschiedener Filterkörnungen ermöglicht die Entnahme annähernd gleicher Gasmengen aus verschiedenen Entnahmetiefen im Kaminquerschnitt. OPTIONEN Verlängerungsrohre Prüfungsanschluss im Sondenkopf Wetterschutzhaube Metallsinterfilter im Sondenkopf Metallsinterfilter für Sondenspitze Temperaturbereich: 0 - 250 °C, elektronisch regelbar Max. Entnahmetemperatur: 600 °C Länge: ca. 510 mm (ab Flansch mit Filtereinheit) Verlängerungsrohre: 250 / 500 / 1000 mm Länge der Filtereinheit: ca. 180 mm Filterkörnung: 10 / 20 µ Werkstoffe: Edelstahl 1.4571, Keramik Montageflansch: DIN 1527, PN 6, NW 65 Gewicht: ca. 9,5 kg Leistungsaufnahme: max. 400 VA Netzanschluss: 4-polige Rundsteckverbindung Netz: 230 V, 50 Hz Mindestabnahmemenge: 5 Stück
TEMPERATURREGLER HT / HTI

TEMPERATURREGLER HT / HTI

Für die einfache Handhabung in der Emissionsüberwachung bietet sich ein Messgasaufbereitungssystem mit integriertem Temperaturregler an. MIKROPROZESSOR-REGLER HT 43 Der Temperaturregler HT 43 ist für beheizte Messgasleitungen mit einem Temperaturfühler konzipiert. HIGH TECH INTEGRAL-TEMPERATURREGLER HTI Dieser Regler benötigt keinen Temperaturfühler herkömmlicher Art. Der Regler HTI 16 misst die Temperatur des Heizdrahtes als Integral über die gesamte Länge. Jeder Punkt des Heizschlauches wird zur Temperaturmessung herangezogen. Dies hat den Vorteil, dass die Messung nicht punktuell an einer beliebigen Stelle, sondern als Integral über das erwärmte Medium erfolgt (patentiert). Netz: 230 V, 50 - 60 Hz Schaltleistung HT 43: 2300 W Schaltleistung HTI 16: 3600 W Regelverhalten: Überschwingen und ohne erkennbare Regelhysterese, Güteklasse 2 % Gehäuse: ABS IP 65, Andere auf Anfrage Abmessungen: ca. H 160 x B 100 x T 90 mm Netzzuleitung: 1,5 m mit Netzstecker, Ausgang über Mehrpolstecker Anzeigen: LED Display Multifunktional mit Status und Fehleranzeigen
PID-Regler SIM960

PID-Regler SIM960

Modell SIM960 enthält einen analogen PID-Regler zu Steuerungs- und Regelungszwecken. Zusammen mit dem Modul SIM921 kann eine kostengünstige Temperaturregelung für cryogene Anwendungen gesch. werden Über die Schnittstellen oder die Frontplatte sind die einzelnen Regelkonstanten (Verstärkung, Integrationszeit und Differentiationszeit) getrennt einstellbar. Das Fehlersignal kann an einem Balkendiagramm verfolgt werden.
ASAP 2020 Plus - Physisorption

ASAP 2020 Plus - Physisorption

Beschleunigtes Oberflächen- und Porosimetrie-System. Ausgereiftes Design, intuitive Bedienung, forschungstaugliche Ergebnisse Das Micromeritics ASAP 2020 Plus-Analysegerät bündelt eine Vielzahl automatischer Gassorptionstechniken in einem einzigen, aber leistungsfähigen Tischinstrument. Das System ist so konzipiert, dass es hochwertige Oberflächen-, Porositäts-, Chemisorptions- und Physisorptions-Isotherm-Daten für Materialanalyselabors mit ständig zunehmenden Analyseanforderungen bietet. Das ASAP 2020 Plus-System bietet maximale Vielseitigkeit über einen bemerkenswert umfassenden Anwendungsbereich, um Ihre spezifischen Anforderungen zu erfüllen. Mit mehr installierten Instrumenten in mehr Ländern für mehr Benutzer bietet die ASAP-Produktfamilie nachgewiesenermaßen weltweit die Instrumente der Wahl, wenn Forscher präzise, hochwertige Gasadsorptionsdaten benötigen. Erweiterte Möglichkeiten durch optionale Konfigurationen: Das ASAP 2020 Plus kann gemäß Ihren spezifischen Anforderungen konfiguriert werden und bietet die Möglichkeit einer Aufrüstung zu einem späteren Zeitpunkt, wenn sich Ihre Analyseanforderungen ändern. Dies maximiert die Nützlichkeit dieses Instruments und Ihre Investition. Sie haben die Auswahl zwischen den Funktionen kleine Oberfläche, beheizter Dampf und Mikroporen. Fügen Sie ein Kryostat oder einen externen Detektor hinzu oder konfigurieren Sie das Gerät für verbesserte Chemikalienbeständigkeit, wenn Sie mit aggressiven Dämpfen arbeiten. Mit dem ASAP 2020 Plus-System benötigen Sie nur noch ein Instrument für fast alle Oberflächenbeschreibungs-Anforderungen in Ihrem Labor. Kaltzonenkontrolle mit einzigartigem und innovativem isothermen Mantel: Isotherme Mäntel verfügen über eine Garantie für die Lebensdauer des Instruments und stellen ein einheitliches thermisches Profil entlang der Gesamtlänge sowohl der Proben- als auch der Sättigungsdruckröhrchen (P°) sicher. Flexible Bauweise: Zwei unabhängige Vakuumsysteme ermöglichen die gleichzeitige Vorbereitung von zwei Proben, während eine weitere analysiert wird. Dies maximiert die Produktivität Ihrer Mitarbeiter und die Investitionsrendite. Die kontinuierliche Überwachung des Sättigungsdrucks (P°) und die Kaltzonenkontrolle mit dem einzigartigen isothermen Mantel bieten eine stabile thermische Umgebung sowohl für Sättigungsdruck als auch für Adsorption. Widmen Sie Ihre Zeit den Ergebnissen statt der Kontrolle von Temperaturschwankungen. Das ASAP 2020 Plus-Analysegerät ist mit einer Vielzahl von Ausrüstungsoptionen konfigurierbar, um Ihre spezifischen Analyseanforderungen zu erfüllen. Forschungstaugliche Ergebnisse in einem vom Kunden konfigurierbaren Instrument für eine Vielzahl von Mesoporen-, Mikroporen- und kleinen Oberflächenanwendungen: Programmierbares Ausheizsystem mit zwei Stationen für automatische Probenvorbereitung bei standardisierten Arbeitsabläufen. Ein spezieller P°-Sensor ermöglicht eine schnellere Analyse und liefert P°-Werte bei denselben Bedingungen wie die Adsorptionsmessung. Sechs Analysegaseinlässe mit speziellen Dampf- und Helium-Freiraumanschlüssen bieten größere Flexibilität und automatische Auswahl der Vorbehandlungs-, Füll- und Analysegase. Die bewährte Kaltzonenkontrolle mit isothermem Mantel sorgt für genaue, reproduzierbare Temperaturbeibehaltung. Die lange Laufzeit und das auffüllbare Dewargefäß sorgen für praktisch unbegrenzte Analysezeit. Unabhängige, doppelte Standardvakuumsysteme (eines für die Analyse, eines für die Probenvorbehandlung). Es ist auch ein optionales, ölfreies System erhältlich. Das proprietäre Druckaufnehmersystem sorgt für beispiellose Stabilität, schnelle Reaktion und geringe Hysterese für verbesserte Genauigkeit und Verbesserung des Rauschabstands. Beschichteter monolithischer, temperaturgeregelter Edelstahlverteiler bietet nicht kontaminierende, inerte Oberflächen.
Laser-Digitallichtschranken D-LAS Serie

Laser-Digitallichtschranken D-LAS Serie

Die Laser-Digital-Lichtschranken der D-LAS Serie arbeiten mit sichtbarem, parallel gerichtetem Laserlicht. Durch den Einsatz runder bzw. rechteckiger Blenden erfolgt eine homogene Lichtverteilung innerhalb des Laserstrahls. Kleinste Gegenstände werden selbst bei großer Sender- Empfänger-Distanz erkannt. Eine Verschmutzungskompensation erfolgt durch integrierte Schwellennachführung (bei D-LAS1, D-LAS2, D-LAS-34, D-LAS-34/90). Diese Lichtschranken sind ideal einsetzbar für Positionieraufgaben. Durch ihr robustes Metallgehäuse und die hohe Schutzart sind die Laser-Digitallichtschranken der D-LAS Serie für den anspruchsvollen Einsatz im Maschinenbau ausgelegt. Die Merkmale der D-LAS Lichtschranken auf einen Blick: Kollimierter Laserstrahl Das von einer Präzisionsoptik (Asphäre aus Glas) emittierte Laserlichtbündel erlaubt ein Erkennen von kleinsten Gegenständen (z.B. Fäden) selbst bei großer Sender/Empfänger-Distanz (Abstände typ- und blendenabhängig bis zu 100m). Vorteile: Telezentrischer Aufbau Exakte Schattenprojektion auf Empfänger Messobjektabstand vom Sender bzw. Empfänger beeinflusst das Messsignal in weiten Bereichen nicht Homogene Lichtverteilung Durch die Verwendung von Präzisionsblenden im Sender wird eine optimale Anpassung an die jeweilige Anwendung erreicht. Neben einer großen Anzahl von Standardblenden können auch spezielle Aperturen realisiert werden. Die Blende bewirkt eine gleichmäßige Lichtverteilung im Strahl sowie eine scharfe Strahlbegrenzung. Einstellbare Laserleistung Die Laserleistung der Sender vom Typ D-LAS1, D-LAS2 und D-LAS90 lässt sich über den Stromsteuereingang (I-Control) einstellen. Außerdem erlaubt dieser Eingang ein Abschalten des Lasers und kann somit zum Testen der Laserlichtschranke verwendet werden (Testeingang). Hohe Positioniergenauigkeit Bei konventionellen Lichtschranken wird die Schaltschwelle mit Hilfe eines Potentiometers einstellt; sie ist abhängig von einer festen Spannung (Absolutwert). Die Folge davon ist eine Verschiebung des Schaltpunktes bei zunehmender Verschmutzung. Bei den Laser-Digitallichtschranken der D-LAS Serie dagegen kompensiert eine dynamische Nachführung der Schaltschwelle den Verschmutzungseffekt durch kontinuierliche Überwachung des Maximalwertes am Empfänger: Eine Verschmutzungszunahme führt somit zu keiner Schaltpunktverschiebung. Monitorsignal Bei den Laserlichtschranken vom Typ D-LAS1 und D-LAS2 wird dem nwender neben dem Schaltsignal ein Analogsignal zur Verfügung gestellt. Durch das „Monitoren“ der Analogspannung ist eine bessere Beurteilung des Schaltsignales möglich. Der Ausgang eignet sich außerdem für messtechnische Zwecke. Dynamische Erfassung Beim Durchqueren des Laserlichtstrahls einer Lichtschranke vom Typ D-LAS1-D löst das Messobjekt einen Spannungspuls aus, dessen Impulsdauer unabhängig von den Verweildauer des Messobjektes im Laserstrahl ist. Die Impulsdauer ist fest auf 10 ms eingestellt. Wechsellichtbetrieb Sind beim Einsatz der Laserlichtschranke intensive Fremdlichtquellen zu erwarten, so empfiehlt es sich aus Sicherheitsgründen, auf ein getaktetes System zurückzugreifen (D-LAS1, D-LAS3, D-LAS90). Durch den Einsatz schmalbandiger elektrischer Filter wird lediglich das modulierte Licht des Senders erkannt. Selbst getaktete Lichtquellen (wie z.B. Leuchtstoffröhren) haben keinen Einfluss auf die Schaltsicherheit. Gleichlichtbetrieb Werden hohe Anforderungen an die Schaltfrequenz gestellt, kann auf ein nicht-getaktetes System zurückgegriffen werden. Die Fremdlichtunterdrückung erfolgt dabei durch schmalbandige, optische Filterung. Gleichlicht-Lichtschranken eignen sich deshalb für schnelle Vorgänge bzw. zur Erfassung schnell bewegter Objekte. Gleichlicht-Lichtschranken vom Typ D-LAS2 bzw. D-LAS34, D-LAS34/90, D-LAS-ED1 können mit Hilfe des Analogausgangs auch zu messtechnischen Aufgaben herangezogen werden.
Laser-Triangulationssensoren L-LAS-LT Serie

Laser-Triangulationssensoren L-LAS-LT Serie

Mit den Laser-Triangulationssensoren der L-LAS-LT Serie können Abstand bzw. Dicke von Objekten sehr genau bestimmt werden (Auflösung ab typ. 1 µm). Dabei werden mit Hilfe einer Master-/Slave-Sensoranordnung zwei Laserabstandssensoren von einem im Master-Sensor integrierten Controller ausgewertet. Für optisch transparente Objekte (Flachglas, Folien, Wafer) ist eine Spezialversion verfügbar. Die Laser-Triangulationssensoren der L-LAS-LT-SL Serie sind in verschiedenen Varianten mit unterschiedlichen Referenzabständen (ab 32,5 mm bis zu 600 mm) und dabei je Variante in zwei Typen erhältlich: entweder als Typ L-LAS-LT-SL-P mit sichtbarem rotem Laserpunkt (typ. Ø 0,3 mm) oder als Typ L-LAS-LT-SL-L mit sichtbarer roter Laserlinie (typ. 0,3 mm x 3 mm). Die Messbereiche liegen entsprechend der gewählten Variante beginnend ab 21 mm bis hin zu 1000 mm. Windows® PC Software L-LAS-LT-Scope Mit Hilfe der Windows®-Bedieneroberfläche L-LAS-LT-Scope können die L-LAS-LT Zeilensensoren sehr einfach parametrisiert werden. Folgende Einstellungen können beispielsweise über die Software am Sensor vorgenommen werden: Einstellung der Laserleistung bzw. Lichtleistung und Art der Leistungsnachregelung, Polarität der Digitalausgänge, verschiedene Auswertemodi, Auslösen des Teachvorgangs durch Softwaretaste, Einstellung der Toleranzgrenzen für die Überwachung des Messwertes. Des Weiteren können mittels der Software verschiedene numerische und graphische Messgrößen visualisiert werden. So können die Rohdaten des CCD-Zeilensensors graphisch und numerisch dargestellt werden.
Gabellichtschranken mit integriertem Verstärker FIA Serie

Gabellichtschranken mit integriertem Verstärker FIA Serie

Die Gabellichtschranken der FIA Serie werden in erster Linie für hochpräzise Trigger-Applikationen gewählt. Sie kommen sehr häufig in der Stanztechnik zum Einsatz. Wegen ihres kompakten und sehr robusten Aufbaus finden sie aber generell Verwendung in rauer Industrieumgebung. Bei den Gabellichtschranken der FIA Serie ist die komplette Auswerteelektronik im Sensorgehäuse integriert. Der sichtbare Lichtstrahl erleichtert die Einstellarbeit erheblich. Der Schaltzustand wird über eine rot/grün-LED angezeigt. Bei der Version FIA-A steht die hohe Positioniergenauigkeit im Vordergrund, der temperaturkompensierte Analogausgang liefert dabei eine zum Abdeckungsgrad der Blende proportionale Spannung. Es stehen verschiedene Rechteckblenden stehen zur Auswahl. Die Laser-Gabellichtschranken der FIA-L Serie kommen in erster Linie im Stanzbereich bei der Vorschubmessung bzw. bei der exakten Abfrage von kleinen Teilen bei hoher Vorschubgeschwindigkeit zum Einsatz. Diese Sensoren zeichnen sich vor allem durch die hohe Schaltfrequenz (typ. 10 kHz), die kompakte Bauform sowie die hohe Schaltgenauigkeit aus.
Sensoren für den mittleren Infrarotbereich (MIR) SPECTRO-M Serie

Sensoren für den mittleren Infrarotbereich (MIR) SPECTRO-M Serie

Die Sensoren der SPECTRO-M Serie eignen sich insbesondere zur Dickenmessung dünner Öl- bzw. Kunststoffschichten auf metallischem Hintergrund. Dabei können Schichtdicken typischerweise ab 0.1µm erfasst werden. Gerade nach dem Waschvorgang von Stanz- und Biegeteilen muss kontrolliert werden, ob das für den Stanzvorgang aufgetragene Schneidöl nach dem Reinigungsprozess in Gänze entfernt werden konnte. Zur Stichprobenkontrolle wird hierbei oftmals auf die Testtintenmethode zurückgegriffen, hierbei spielt die Oberflächenspannung eine wichtige Rolle: ab 38mN/m gilt ein Bauteil in der Regel als gereinigt. Mit der Windows®-Software zur SPECTRO-M Serie kann sowohl auf die Dicke in µm als auch auf die Oberflächenspannung in mN/m Bezug genommen werden. Des Weiteren kann mit den Sensoren der SPECTRO-M Serie die Dicke von dünnen transparenten Kunststofffolien ermittelt werden. Gerade bei Stretchfolien kann dabei die Streckung der Folie kontrolliert werden, ferner kann aber auch INLINE, während der Produktion einer Folie, deren Dicke gemessen werden. SPECTRO-M-10-MIR Inline-Kontrolle dünner Ölschichten auf Metall: Das MIR-Messverfahren, das in den SPECTRO-M-Sensoren umgesetzt wurde, wurde von Sensor Instruments entwickelt, um sehr dünne organische Schichten auf Metalloberflächen erfassen zu können. Deshalb sind die SPECTRO-M-Sensoren für die Detektion und Inline-Kontrolle dünner Ölfilme auf Metall geradezu prädestiniert
ASAP 2050 Xtended Erweiterter Druck

ASAP 2050 Xtended Erweiterter Druck

Die Kraftstoffzelle und ihre chemische Energiequelle, Wasserstoff, haben als vielversprechende langfristige Lösung für den weltweiten Energiebedarf in letzter Zeit viel Aufmerksamkeit erhalten. Die Entwicklung von Speichertechnologien unter Einbeziehung fortschrittlicher Materialien und die Umwandlung von Wasserstoff in nützliche Energieformen sind äußerst wichtig. Es ist eine grundlegende Kenntnis der Physisorptions-/Chemisorptionsprozesse von Wasserstoff und der Adsorptions-/Desorptionskinetik erforderlich, um die Aufnahme- und Freisetzungsleistungsraten von Wasserstoff zu optimieren. Kenntnisse der chemischen Reaktivität und Materialeigenschaften, insbesondere in Bezug auf die Exposition unter verschiedenen Bedingungen (Luft, Feuchtigkeit usw.) müssen gesammelt werden. Das Micromeritics ASAP 2050 Xtended-Drucksorption-Analysegerät soll diese und viele andere erhöhte Drucksorptionsanforderungen erfüllen. Das Instrument kombiniert viele Fähigkeiten des beliebten ASAP 2020 von Micromeritics mit zusätzlichen Funktionen, die es dem Benutzer ermöglichen, Daten in einer erweiterten Druckumgebung zu erhalten. ASAP-Standardmerkmale: Zwei unabhängige Vakuumsysteme ermöglichen die gleichzeitige Vorbereitung von zwei Proben, während eine weitere analysiert wird. Intelligente Ausheizsysteme mit zwei Stationen für die vollständig automatisierte Ausheizung mit präzise gesteuerten Heizprofilen. Ein äußerst flexibles und interaktives Berichterstellungssystem, das eine extrem vielseitige grafische Benutzeroberfläche umfasst, die die benutzerspezifische Präsentation der Ergebnisse ermöglicht. Analysesystem: Der Analyseverteiler kann im Vakuum und bei bis zu 10 atm betrieben werden. Ein optionales Kälteanlagen-Dewargefäß und Umwälzbad ermöglichen den zeitlichen unbegrenzten Betrieb des ASAP 2050 – das Instrument unterstützt außerdem die Verwendung eines Dewar-Standardgefäßes mit Kryogen (normalerweise flüssiger Stickstoff oder Argon), das eine mindestens 50 Stunden lang unbeaufsichtigte Analyse ohne Nachfüllen des Dewargefäßes ermöglicht. Edelstahl-Probenröhrchen mit geraden Wänden sind für den sicheren Betrieb bis 150 psia geeignet. Schnelle Erfassung nicht monotonischer Isotherme mit üblicher Isotherm-Zyklus-Software. Spezielle Ausheizmäntel können verwendet werden, um vor der Analyse Proben vor Ort am Analyseanschluss vorzubereiten. Ausheizsystem: Temperaturen an jedem Ausheizanschluss und die Rate der Temperaturänderung können individuell ab wenigen Grad über Umgebungstemperatur bis 450 °C eingestellt und überwacht werden. Eine benutzerspezifische Druckeinstellung schützt die Probe vor Bedampfung oder Schäden während der Probenvorbereitung.