Neodym-Magnete
Aufgrund ihrer hohen Haftkraft bei kleinem Volumen ermöglichen Magnete aus Neodym neue technische Lösungen. Trotz des geringeren Materialeinsatzes bleibt die Systemleistung verglichen mit den anderen Werkstoffen gleich. Eine Miniaturisierung ermöglicht neue und innovative technische Produkt- und Prozesslösungen.
Eigenschaften / Vorteile:
Magnete Neodym gesintert
hat derzeit höchste Magnetstärke
hohe magnetische Stabilität
Anwendungsbereiche:
Neodymmagnete haben ein umfangreiches Einsatzgebiet, so dass hier nur einige Anwendungsbeispiele genannt werden können:
Elektro-, Servo-, Gleichstrom-, Synchron- und Linearmotoren
Generatoren
Zentraldreh- und Stirndrehkupplungen
Hysterese- und Wirbelstrombremsen
Sensoren
Haftanwendungen
Aktoren
Magnetherstellung
Für gesinterte Magnete aus Neodym wird für das Ausgangsmaterial Neodym, Eisen, Bor, Dysprosium und in geringen Anteilen weitere Elemente wie beispielsweise Kobalt, Kupfer, Gallium, Aluminium verwendet.
Das Material wird in einem Ofen bei Temperaturen über 1300°C geschmolzen, in eine Form gegossen und in Metallblöcken abgekühlt. Die Blöcke werden pulverisiert und zu ca. 3µm kleinen Partikeln gemahlen. In dieser Phase sind die kleinen Partikel in einem magnetisch anisotropen Zustand. Bei Temperaturen über 725°C werden die Partikel zu Formen gepresst. Die Blöcke erreichen in dieser Phase ca. 75%-80% der theoretisch maximal möglichen Dichte. Im nächsten Schritt erfolgt das Sintern unter Schutzgas oder Vakuum für mehrere Stunden bei Temperaturen knapp unterhalb der Schmelztemperatur des Pulvergemischs zwischen 1030°C und 1100°C. Bei dieser Temperatur haften die kleinen Partikel im Pulver stärker aneinander, so dass die Blöcke auf eine Dichte von 99% der theoretisch maximal möglichen Dichte zusammenschrumpfen.
Im Anschluss an eine Wärmebehandlung bei Temperaturen zwischen 600°C und 900°C werden die Blöcke in die gewünschte Form gebracht, erhalten eine Oberflächenbehandlung und werden magnetisiert.
Magnetformen:
Die am häufigsten genutzten Magnetformen sind Quader, Ringe, Zylinder und Segmente. Durch Trenntechnik lassen sich aus den Magnetblöcken auch Kleinstmagnete gewinnen.
Für andere Formen muss die Form vor dem Pressen bestimmt werden. Die nachträgliche Anpassung der Form aus den Magnetblöcken ist sonst zu kompliziert und teuer. Ebenso lassen sich Abschrägungen, Senkungen, Löcher, Kerben, etc. nur in Pressrichtung durchführen. Für anisotrope Magnete sind diese nur quer zur Vorzugsrichtung möglich.
Temperaturverhalten:
Die maximal mögliche Einsatztemperatur für NdFeB-Magnete beträgt zwar abhängig vom Werkstoff zwischen 80°C und 220°C, richtet sich aber nach der Lage des Arbeitspunktes. Dieser wird durch die Scherung des passiven magnetischen Kreises und die auftretenden Gegenfeldbelastungen vorgegeben. Bleibt der Arbeitspunkt im linear verlaufenden Bereich der Entmagnetisierungskennlinie, so treten keine irreversiblen Entmagnetisierungserscheinungen auf. Wird die sogenannte Knickfeldstärke, von der an die Entmagnetisierungskennlinie nicht mehr linear verläuft, überschritten, kommt es zu einer Entmagnetisierung. Diese lässt sich durch erneutes Aufmagnetisieren beheben.
Chemische und mechanische Eigenschaften:
Auf Grund ihrer chemischen Zusammensetzung (hoher Eisenanteil) sind gesinterte NdFeB-Magnete und ihrer Kristallstruktur sehr anfällig gegenüber Umwelteinflüssen. Aus diesem Grund bietet Tridelta alle Sorten alternativ als korrosionsarmes Material an. Hierbei wird ein Teil des Eisenanteils durch Kobalt und andere Metalle ersetzt, so dass die Korrosionsneigung deut