Finden Sie schnell plasmabeschichten für Ihr Unternehmen: 354 Ergebnisse

Oberflächenbehandlung verschiedenster Materialien durch Plasma und Corona

Oberflächenbehandlung verschiedenster Materialien durch Plasma und Corona

Die Oberflächenbehandlung mittels Plasmabehandlung bietet innovative Lösungen für die in vielen Branchen auftretenden Probleme mit Haftungs- und Benetzungseigenschaften. Mit mehr als 40 Jahren Erfahrung in der Herstellung von qualitativ hochwertigen Oberflächenbehandlungsprodukten für diverse Branchen entwickelt Tantec kontinuierlich neue und innovative Lösungen für einen anspruchsvollen Markt. Als privates, 1974 gegründetes Unternehmen ist die Tantec Group ein führender Hersteller von sowohl standardisierten als auch kundenspezifischen Plasma- und Corona-Systemen für die Oberflächenbehandlung von Kunststoffen und Metallen zur Verbesserung ihrer Adhäsionseigenschaften. Unsere Geräte zur Oberflächenbehandlung werden über unsere eigenen Niederlassungen und mehr als 30 Partner weltweit an Endverbraucher und OEMs in der ganzen Welt vertrieben. Die Tantec Vertrieb GmbH ist dabei Ansprechpartner für den deutschen Markt und steht bei Fragen jederzeit gerne zur Verfügung. Geräte: ProfileTEC Eigenschaften: Plasma Vorbehandlung vor Beflockung / Gleitbeschichtung von EPDM Profilen
Plasma CAT1000 1-4 Kanal, Oberflächenvorbehandlung, Plasmabeschichtung

Plasma CAT1000 1-4 Kanal, Oberflächenvorbehandlung, Plasmabeschichtung

Das potenzialfreie Plasma wird bei der CAT-Technologie durch zwei Lichtbögen generiert, wobei der Gegenlichtbogen gleichzeitig als Gegenelektrode fungiert. Durch diese Methode wird der Einfluss des Verschleißes auf die Plasmabildung minimiert. Ob Einzeldüse für Behandlungsbreiten von 20 - 40 mm pro Kopf oder mehrere Düsen nebeneinander für breitere Anwendungen - für jede energieintensive Vorbehandlung kann mit dieser leistungsstarken Technologie eine Lösung geschaffen werden. Ein Generator versorgt maximal 2 Düsenköpfe. Auch hier können spezielle funktionelle Gruppen an der Polymeroberfläche durch unterschiedliche Prozessgase eingebracht werden.
Plasmaschneiden

Plasmaschneiden

leistungsstarkes und vielfältiges Schneidverfahren einsetzbar bei allen Metallen schmale Wärmeeinflusszone hohe Schneidgeschwindigkeit Trennung von elektrisch leitenden Werkstoffen
Plasmaschneiden

Plasmaschneiden

Ein thermisches Schneidverfahren, das aufgrund seiner einfachen Handhabung beliebt ist. Das Plasmaschneiden zeichnet sich durch seine kurze Durchstechzeit, hohe Schnittgeschwindigkeit und Schnittqualität bei geringen Betriebskosten aus.
Plasmaschneiden

Plasmaschneiden

Plasmaschneiden ist ein thermischer Schneidprozess, der mit einem eingeschnürten Lichtbogen ausgeführt wird. Der Plasmalichtbogen besitzt eine extrem hohe Temperatur und schmilzt den Werkstoff oder verdampft ihn teilweise und treibt ihn aus. Dadurch entsteht die Schnittfuge. Vorteil dieses Schneidverfahrens ist u.a. die geringe Wärmeeinbringung in die Stahlteile, um den Verzug so gering wie möglich zu halten. Durch die hohe Brenngeschwindigkeit bleiben die Kosten je Schnittmeter gering, so dass die wirtschaftliche Produktion von Brennzuschnitten – vor allem im Bereich von großen Bauteilen und geringen Blechdicken – ermöglicht wird. Ebenfalls kann der Plasmastrahl für das Markieren der Brennzuschnitte eingesetzt werden, ohne dass Rüstarbeiten notwendig sind. Des Weiteren ist unsere Plasmaanlage mit der patentierten Kjellberg HiFocus+ - Technologie, für das laserähnlich Plasmaschneiden von Baustahl mit geringen Winkelabweichungen bei erhöhter Schnittgeschwindigkeit, ausgestattet.
Plasma-Schneiden

Plasma-Schneiden

Elektrode Schneidgas Kühlgas Plasmadüse Plasmalichtbogen Grundwerkstoff Grundwissen Plasma-Schneiden: Beim Plasmaschneiden brennt der elektrische Lichtbogen zwischen einer nicht abschmelzenden Elektrode und dem Werkstück. Durch eine Düse und durch zugeführte Druckluft wird er zusätzlich eingeschnürt, wodurch die Intensität und Stabilität wesentlich erhöht wird. Durch diese Einschnürung entsteht im Brenner ein hocherhitztes Gas mit hohem Energiegehalt, dessen elektrische Energie direkt in Wärme umgesetzt wird. Dieses ionisierte Gas, das den Lichtbogen auf das Werkstück überträgt, bezeichnet man als das Plasma. Schneidbare Materialien: Mit dem Plasmaschneid-Verfahren können Stahl, Edelstahl, Aluminium, Kupfer, Guss, Messing usw. geschnitten werden. Die besonderen Vorteile: Durch die große Energiedichte des Plasmalichtbogens erreicht man eine hohe Schnittgeschwindigkeit. Die Schnitte sind steil, grat- und verzugsfrei und von hoher Wirtschaftlichkeit. Durch das problemlose Handling und die Verwendung einfacher Druckluft als Schneidgas bieten sich grenzenlose Möglichkeiten. In Stahlbau, Installation, Behälterbau etc. .
PLASMASCHNEIDEN

PLASMASCHNEIDEN

Produktivität, Qualität und Einsatzvielfalt – und das in Kombination mit höchster Präzision. Dahinter steckt beste Qualität der Schnittflächen, gekennzeichnet durch Bartfreiheit und sehr geringe Rechtwinkligkeits- und Neigungstoleranz sowie Rautiefe. Diese sind im Zusammenwirken mit hoher Präzision im Toleranzbereich bis +/- 0,2 mm. Bei großer Wiederholgenauigkeit stehen sie in Verbindung mit hervorragender Produktivität.
Plasmanitrieren

Plasmanitrieren

Das Plasmanitrieren ist ein thermochemisches Verfahren, bei dem Stickstoffionen in eine metallische Oberfläche eingelagert werden. Durch den Einsatz von Plasma wird eine harte, verschleißfeste Schicht gebildet, die die Lebensdauer von Bauteilen erhöht. Das Verfahren ermöglicht eine präzise Steuerung der Nitrierschichttiefe und -härte.
PLASMASCHNEIDEN

PLASMASCHNEIDEN

Alle elektrisch leitfähigen Materialien können geschnitten werden z.B. Stahl, Aluminium, Edelstahl, Hardox, Kupfer - Großformat 3000*1500 mm - MixGas Plasmaanlage  (O2/N2) - Lochstechen bis 32 mm - Trennschnitte bis 50 mm zur Bearbeitung DXF und DWG Dateie
PLASMASCHNEIDEN

PLASMASCHNEIDEN

Mit Plasmaschneidemaschinen können Materialien bis 25 mm Stärke geschnitten werden. Der maximale Schneidebereich beträgt 12 000 mm x 4 000 m.
PLASMASCHNEIDEN

PLASMASCHNEIDEN

Plasmaschneiden ist wesentlich wirtschaftlicher als Laserschneiden. Plasma-Brennschneidemaschinen sind bei gleichen Investitionen größer als Lasertische und kommen bei größeren Bauteilen zum Einsatz. Beim Plasmaschneiden kann immer nur ein Teil produziert werden. Wir vereinen unsere Kompetenzen zu einer Gesamtleistung: Planung, Konstruktion, Fertigung von Rohteilen, zerspanende Weiterverarbeitung und das Finish mit Sandstrahlen oder Lack.
Plasmaschneiden

Plasmaschneiden

Plasmaschneiden ist ein Schmelzprozess, während dem der metallische Werkstoff durch den Plasmastrahl geschmolzen und aus der Schnittfuge geblasen wird. Vorteil beim Plasmaschneiden ist u. a. die geringe Wärmeeinwirkung auf die Stahlteile, um eine Weiterverarbeitung der Plasmabrennschnitte im Hinblick auf Planheit / Ebenheit zu vereinfachen. Durch die hohe Brenngeschwindigkeit beim Plasmaschneiden bleiben die Kosten pro Schnittmeter gering, sodass die wirtschaftliche Produktion von Formzuschnitten ermöglicht wird. Trotz oder gerade wegen der hohen Brennschnittgeschwindigkeit beim Plasmaschneiden (bis zu 4000mm/min.) sind saubere Schnittkanten und engste Toleranzen möglich. Wir bevorzugen daher Plasmabrennen gegenüber Autogenbrennen besonders bei großen und relativ dünnen Stahlzuschnitten, um die beste Qualität unter Berücksichtigung der Wirtschaftlichkeit zu erreichen. Durch Plasmaschneiden erstellte Brennteile, vor allem Ringe und Ronden sind bestens zur Weiterverarbeitung auf Bearbeitungszentren sowie Dreh- und Bohrmaschinen geeignet. Gerne führen auch wir diese mechanische Bearbeitung für Sie durch.
Plasmanitrieren

Plasmanitrieren

Thermochemische Wärmebehandlung bei niedrigen Behandlungstemperaturen für hohe Maßhaltigkeit für jeden Stahl Das Nitrieren zählt zu den thermochemischen Wärmebehandlungen und wird angewendet, um Stählen zu verbesserter Korrosionsbeständigkeit und Härte zu verhelfen. Hierfür wird der Werkstoff zuerst erwärmt und nach Erreichen der gewünschten Behandlungstemperatur Stickstoff zugeführt. Dieser diffundiert in die Oberfläche des Stahls und verändert ihre Eigenschaften zugunsten einer verbesserten Widerstandsfähigkeit. Die exakte Dicke und Härte der durch die Randschichtumwandlung gebildeten Nitrierschicht hängt von der Legierung des behandelten Stahls, aber auch von den herrschenden Temperaturen und der Behandlungsdauer ab. Das Plasmanitrieren bietet die Möglichkeit, den Aufbau der Randschicht präzise an die Beanspruchung anzupassen.
Plasmazuschnitte

Plasmazuschnitte

Beim Brennschneiden von Stahl mit einer CNC-Brennschneidmaschine können wir für Sie wirtschaftlich Zuschnitte wie Rechtecke, Ringe, Ronden u.a. nach Ihren Wünschen herstellen. Dabei können wir mit der Plasma Brennschneidtechnik bei einer Blechdicke von 3-45 mm arbeiten. Der Vorteil von Plasmazuschnitten gegenüber dem Laser ist die Wirtschaftlichkeit. Die Schnittgeschwindigkeiten sind bei den dickeren Blechstärken ähnlich bzw. gleich schnell wie beim Laser. Die Maschine ist jedoch im Invest und in der Wartung deutlich günstiger und hat damit einen günstigeren Stundensatz. Außerdem sind Plasma-Brennschneidmaschinen bei gleicher Investitionshöhe meist deutlich größer und können somit größere Bauteile herstellen. Plasmazuschnitte haben jedoch qualitativ dem Laser einen kleinen Nachteil. Sehr kleine Löcher und Innenausschnitte sind nicht ganz so hochpräzise wie bei einem Laserschnitt und können einen Schrägschnitt aufweisen. Gegenüber dem Schneidverfahren Autogen setzt sich die Plasma bei kleinen Blechdicken deutlich auf Grund der schnellen Schnittgeschwindigkeiten durch. Damit ist die Maschine wesentlich wirtschaftlicher als eine langsame Autogen-Brennschneidmaschine. Die Autogentechnik kann hier nur punkten wenn man auf Grund der Bauteilgeometrie mehrere Brenner einsetzen kann. Somit kann man bsp. 6 Teile gleichzeitig schneiden während auf der Plasma-Maschine nur 1 Teil produziert wird. Bei Großsserien und Massenteilen ist dies sehr wirtschaftlich und kann dann günstiger sein. Die Nachteile sind jedoch, dass beim Autogenschneiden sehr große Wärmeeinbringung stattfindet. Damit werden die Kanten hart und die Teile oftmals uneben oder wellig. Blechdicken: 3-45 mm max. Breite: 4.000 mm max. Schneidlänge: 24.000 mm
Industrielackierung

Industrielackierung

Nasslackierung von Kunststoff- , Metall-, Glas oder Holzteilen. Kunststoffteile, Metalle ob Stahl oder Aluminium, Glas oder Holz werden in unserem Unternehmen im Nasslackverfahren beschichtet. Wir lackieren für Sie Einzel- als auch Serienteile in verschiedenen Farbsystemen wie z.B. RAL oder NCS .
Plasmabrenner

Plasmabrenner

gerader Ausführung oder mit abgewinkeltem Brennerkopf schneiden auch stark strukturierte Werkstücke: PerCut 160-2 60° LS mit um 60° abgewinkeltem Brennerkopf, PerCut in gerader Ausführung, PerCut in gerader Ausführung PerCut in gerader Ausführung Weitere Informationen: Robotergeführtes Plasmaschneiden Führungssysteme Neben den großen CNC-geführten Brennschneidmaschinen für komplexe Schneidaufgaben gibt es für einfache Anwendungen und geringere Budgets entsprechende Führungssysteme. Plasmaschneidanlage und Führungssysteme sind auch hier aufeinander abgestimmt, erlauben aber i. d. R. keine hochqualitativen Schnitte. Darüber hinaus können Plasmabrenner (auch Plasmahandbrenner) an einfachen linearen Achsen, an Kreisschneideinrichtungen und anderen hand- oder maschinell (elektrisch) geführten Systemen effizient betrieben werden.
CNC Plasmatechnik

CNC Plasmatechnik

Das Plasmaschneiden gehört zu den thermischen Schmelzschneidverfahren, welches mit einem durch eine Düse eingeschnürten, elektrischen Lichtbogen ausgeführt wird. Beim Schneidprozess wird zunächst zwischen Düse und Elektrode (Kathode) ein Pilotlichtbogen durch Hochspannung gezündet. Er ist energiearm und sorgt für die teilweise Ionisation der Strecke zwischen Plasmabrenner und Werkstück. Sobald der Pilotbogen das Werkstück berührt, wird der elektrische Stromkreis geschlossen und durch eine Leistungserhöhung der Hauptlichtbogen gezündet. Durch die hohe thermische Energie des Lichtbogens und die hohe kinetische Energie des Plasmagases wird der Werkstoff aufgeschmolzen und die Schmelze aus der Schnittfuge getrieben. Besonders große Vorteile bietet das Verfahren durch die schmale Wärmeeinflusszone und die hohen Schneidgeschwindigkeiten. In unserem Unternehmen arbeiten wir mit MultiTherm 4000 / Maschinenbett 12 m x 3 m Stromquelle Kjellberg / HiFocus440i
Puls-Plasma-Nitrieren und PVD-Beschichtung mittels Lichtbogenverdampfung

Puls-Plasma-Nitrieren und PVD-Beschichtung mittels Lichtbogenverdampfung

– die Kombination dieser Prozesse erzeugt ein hartes nitriertes Grundmaterial und eine Hartstoffbeschichtung auf der Oberfläche. Dies kann die Lebensdauer von Komponenten und Formwerkzeugen signifikant erhöhen. Beim Puls-Plasma-Nitrieren wird über eine separate Anode ein Plasma generiert, welches hochenergetische Stickstoff-Ionen erzeugt. Diese können bis zu einer Tiefe von 100 μm ins Grundmaterial des Beschichtungsgutes eindringen und sich dort einlagern.
KTL-Beschichtung

KTL-Beschichtung

KTL-Beschichtungen werden überall eingesetzt, wo exzellenter Korrosionsschutz gefragt ist. Mit dem Verfahren der kathodischen Tauchlackierung (KTL) geben wir Ihren Produkten im Gestellverfahren eine hoch effiziente schwarze Grundbeschichtung. Sie ist speziell für konstruktive Bauteile und komplizierte Werkstückgeometrien geeignet und ein Standardverfahren im Automobilbau. Das in diesem Verfahren schwermetallfreie eingesetzte Lacksystem verfügt über ein ausgezeichnetes Umgriffverhalten, d.h. das auch Beschichtungen an schwer zugänglichen Stellen und Hohlräumen an Bauteilen möglich ist. Oft werden KTL-Beschichtungen als Grundierung von Pulver- und Nasslacken eingesetzt. Von Stahl, Eisenwerkstoffen, Guss und verzinktem Stahl bis hinzu Aluminium eignet sich KTL für alle elektrisch aufladbaren Werkstoffe.
Plasmastrahlquellen

Plasmastrahlquellen

Plasmastrahlquellen sind fortschrittliche Geräte, die in verschiedenen Anwendungen eingesetzt werden, insbesondere in der Materialbearbeitung und Oberflächenmodifikation. Diese Quellen erzeugen einen intensiven Plasmastrahl, der für eine präzise und effektive Behandlung von Materialien verwendet wird. Plasmastrahlquellen bieten zahlreiche Vorteile und finden Anwendung in verschiedenen Industriezweigen. Plasma ist ein ionisiertes Gas, das aus einer Mischung von neutralen Atomen, Elektronen und geladenen Ionen besteht. Plasmastrahlquellen verwenden elektrische Energie, um das Gas in einen hochenergetischen Zustand zu versetzen und ein Plasma zu erzeugen. Dieses Plasma wird dann durch Düsen oder Elektroden gezielt fokussiert und beschleunigt, um einen kraftvollen Plasmastrahl zu erzeugen. Der Plasmastrahl kann zum Schneiden, Schweißen, Beschichten, Reinigen oder Ätzen von Materialien verwendet werden. Die hohe Energie des Plasmastrahls ermöglicht präzise und kontrollierte Bearbeitungsprozesse. Zum Beispiel wird das Plasmastrahlschneiden häufig in der Metallverarbeitung eingesetzt, um dicke Metallplatten mit großer Präzision zu schneiden. Das Plasmastrahlschweißen ermöglicht das Verbinden von Metallteilen ohne zusätzliches Schweißmaterial. Ein weiterer großer Vorteil von Plasmastrahlquellen liegt in ihrer Vielseitigkeit. Sie können mit einer Vielzahl von Gasen betrieben werden, wie beispielsweise Argon, Wasserstoff, Stickstoff oder Sauerstoff, je nach Anwendungsanforderungen. Durch die Auswahl des richtigen Gases können die Eigenschaften des Plasmastrahls angepasst werden, um die beste Leistung zu erzielen. Darüber hinaus können Plasmastrahlquellen auch in Kombination mit anderen Bearbeitungsmethoden wie Laser, Wasserstrahl oder mechanischen Werkzeugen eingesetzt werden, um verbesserte Ergebnisse zu erzielen. Plasmastrahlquellen bieten auch Vorteile in Bezug auf Präzision und Qualität der Bearbeitung. Der Plasmastrahl ermöglicht es, komplexe Formen und Konturen mit hoher Genauigkeit zu schneiden oder zu schweißen. Die Steuerung der Plasmastrahlquellen kann mit Hilfe von CNC-Steuerungen automatisiert werden, um wiederholbare und präzise Ergebnisse zu erzielen. Darüber hinaus erzeugt der Plasmastrahl im Allgemeinen eine schmale Wärmeeinflusszone, was zu geringen Verformungen und einer hohen Oberflächenqualität führt. Es ist wichtig anzumerken, dass der Betrieb von Plasmastrahlquellen Fachwissen und Erfahrung erfordert. Der sichere Umgang mit Hochenergieplasma erfordert geeignete Sicherheitsvorkehrungen und Schulungen. Es ist auch wichtig, die Parameter wie Gasfluss, Stromstärke und Geschwindigkeit des Plasmastrahls sorgfältig zu kontrollieren, um die gewünschten Ergebnisse zu erzielen. Insgesamt bieten Plasmastrahlquellen eine leistungsstarke und vielseitige Lösung für die präzise Materialbearbeitung und Oberflächenmodifikation. Sie ermöglichen eine effektive Bearbeitung von verschiedenen Materialien und bieten eine hohe Qualität und Präzision. Mit kontinuierlichen Weiterentwicklungen und Innovationen in der Plasmastrahltechnologie werden Plasmastrahlquellen weiterhin eine wichtige Rolle in der modernen Fertigung und Materialbearbeitung spielen.
Laserstrahlhärten

Laserstrahlhärten

Die Technologie des Laserstrahlhärtens gehört zu den Kernkompetenzen von ERLAS. Seit Entwicklung der weltweit ersten Härteanlage auf Basis eines Hochleistungsdiodenlasers im Jahr 1998 bietet ERLAS Laserhärteanlagen der Baureihe ERLASER® HARD an und setzt diese auch in der Lohnfertigung für Kunden erfolgreich ein. An den Standorten in Erlangen und Amurrio (Spanien) produzieren drei Laserstrahlhärte- und beschichtungsanlagen für den Werkzeug- und den Maschinenbau. Mit einer temperaturgeregelten Prozessführung und abgestuft einstellbaren Spurbreiten von 5 bis 60 mm ist das partielle, martensitische Umwandlungshärten eine etablierte Technologie geworden, die das Härten mit der Flamme oder mit dem Induktor zunehmend ablöst. Selbst komplizierte Geometrien, wie sie häufig an Schneidwerkzeugen für Blechformteile zu finden sind, sind präzise und sicher bearbeitbar. Die Verwendung einer ständig wachsenden Technologiedatenbank garantiert die gewünschten Härteergebnisse auch bei Losgröße eins. Da beim Laserstrahlhärten nur die Randschicht behandelt wird, entsteht im Vergleich zu anderen Härteverfahren deutlich weniger Verzug. Eine Nachbearbeitung ist deshalb in der Regel nicht notwendig. Für die Programmierung der Laserhärteanlagen setzt ERLAS eine durchgängige CAD/CAM-Lösung mit der Software Toplas3D® ein. Vorteile sind die Vorabprüfung der Machbarkeit, verkürzte Durchlaufzeiten und konstante Einhärtetiefen. Angewendet wird das Verfahren unter anderem an Werkzeugen für die Massiv- und die Blechumformung, das Karosserieziehen, Biegen, Schneiden oder das Spritzgießen.
Plasmaschneiden

Plasmaschneiden

Plasmaschneiden Mit der neuesten Generation unserer Plasmaquelle von Kjellberg aus Finsterwalde schneiden wir Edelstahl mit 440Ampere. Unser Brenner kann Materialien bis zu einer Stärke von bis zu 100mm Edelstahl schneiden. Markierungen und Gravuren sind ebenfalls möglich.
Plasmaschneiden

Plasmaschneiden

STAKO schneidet mit einer Plasma-Schneidanlage (auch als Unterwasserzuschnitt) mit bis zu 400 A Leistung. Schneidmasse (B x L): maximal 3100 x 15000 mm Verarbeitbare Blechdicke: 6 - 50 mm
Mechanisches Bearbeiten der Beschichtungswerkstoffe

Mechanisches Bearbeiten der Beschichtungswerkstoffe

Unsere mechanische Bearbeitung ist darauf spezialisiert, nicht umformbare oder schwer zu spanende Materialien zu bearbeiten. Derzeit sind bei GfE mehrere Vertikal- und Horizontalband-Sägemaschinen im Einsatz. Ergänzt wird das Spektrum durch mechanische Bearbeitungszentren, in denen Formteile bearbeitet werden können.
Plasmaschneiden

Plasmaschneiden

Leistungsfähige DNC – gesteuerte Plasmaschneidanlagen Unter- und Aufwasserzuschnitte in Abhängigkeit zur Blechdicke Fine-Focus-Zuschnitte durchführbar unter Wasser max. 16.000 x 3.500 x 40 mm auf Wasser max. 16.000 x 3.500 x 150 mm für präzise Zuschnitte in allen Formen mit engen Schneidtoleranzen: Materialdicke Abweichung [mm] 3 bis 60 -0 /+3 61 bis 90 -0 /+5 91 bis 150 -0 /+10
KTL-Beschichtung

KTL-Beschichtung

Mit der kathodischen Tauchlackierung (KTL) lässt sich eine sehr gleichmäßige Beschichtung von Metalloberflächen und Hohlräumen mit gleichmäßigen Schichtstärken und sehr guten Oberflächenqualitäten erzielen. Sie gewährleistet einen wirksamen und langanhaltenden Korrosionsschutz. Ob als Sichtlackierung oder als Grundierung für die Kombination mit Pulver – eine KTL-Beschichtung garantiert zuverlässigen Schutz gegen Korrosion. KTL-Beschichtung für Werkstücke bis zu einer Größe von 3600 x 1600 x 800 (L/H/B) und einem Gewicht von bis zu 400 kg Beschichtungsbecken mit Blick in die UV-Spülzone (Ultra Filtrat)
Laserbearbeitung

Laserbearbeitung

Laserbeschriftung kann praktisch auf alle Metalle und Kunststoffe und eine Vielzahl anderer Materialien dauerhaft und ohne unerwünschtes Einbringen zusätzlicher Stoffe aufgebracht werden. Meist erfolgt die Lasermarkierung durch eine Verfärbung des Materials selbst, wobei keine Furchen oder Grate auf der Oberfläche entstehen. Je nach Material kommen verschiedene Beschriftungsverfahren zum Einsatz. Laserschneiden wird dort eingesetzt, wo diffizile Konturen eine präzise, schnelle Verarbeitung und nahezu kraftfreie Bearbeitung unterschiedlichster Materialien notwendig sind.Der Laser weißt eine sehr feine Schnittkontur auf und kann somit Teile sehr genau geschnitten werden. Bei diesem Verfahren wird wenig Wärme in das Bauteil einbracht, wodurch ein geringer Verzug resultiert und meistens eine Nachbearbeitung überflüssig macht.
Laserbearbeitung

Laserbearbeitung

Mit unserer kombinierten 2D-Laser-Stanz- und der 3D-Rohrlaser-Bearbeitung mit modernster Bedienungssoftware, zentraler Programmverwaltung, Online-Programmierung und Vermessung, gewährleisten wir termingerechte und kundenorientierte Arbeitsprozesse.
Produktion von Beschichtungsanlagen

Produktion von Beschichtungsanlagen

PT&B ist ein Unternehmen, das sich auf die Konstruktion und Fertigung von Beschichtungsanlagen spezialisiert hat. Unser Ziel ist es, sicherzustellen, dass die gewünschten Schichteigenschaften erreicht werden, während gleichzeitig der Aufwand und damit die Kosten für den Beschichtungsprozess minimiert werden. Wir sind bestrebt, effiziente Lösungen anzubieten, um unseren Kunden die bestmögliche Leistung zu bieten. Unsere langjährige Erfahrung und unsere hochqualifizierten Mitarbeiter ermöglichen es uns, maßgeschneiderte Lösungen für verschiedenste Anforderungen zu entwickeln. Kontaktieren Sie uns noch heute, um mehr über unsere Produkte und Dienstleistungen zu erfahren!
Plasmavorbehandlung

Plasmavorbehandlung

Viele Anwendungen erfordern eine gute Haftung der Dichtung bzw. des Klebers. Wir empfehlen daher die Plasmavorbehandlung. Plasmavorbehandlung Viele Anwendungen erfordern eine gute Haftung der Dichtung bzw. des Klebers. Wir empfehlen daher die Plasmavorbehandlung. Diese dient zur hochwertigen Reinigung, um Haftungseigenschaften zum Medium zu verbessern und um die Beschichtung von Oberflächen gezielt zu aktivieren. Dieses Verfahren hat deutliche Vorteile gegenüber der chemischer Behandlung von Oberflächen.