Finden Sie schnell hartungen für Ihr Unternehmen: 1487 Ergebnisse

Epoxidharz Gieß- und Oberflächensystem 40 min | E40D

Epoxidharz Gieß- und Oberflächensystem 40 min | E40D

Das Epoxidharz-System E40D ist eine ungefüllte niedrigviskose 2-Komponenten Kombination von Harz und Härter mit einer Verarbeitungszeit von ca. 40 Minuten für Gießanwendungen und Oberflächen. Eigenschaften und Einsatzgebiete: - Gieß- und Oberflächenanwendungen bis 1 cm Schichthöhe - Mehrere Gießebenen möglich - Bildet glasklare klebfreie Oberfläche (wasserklar) - Verbesserte UV-Beständigkeit, vergilbungsarm - Gute mechanische Eigenschaften - Hohe Schlagfestigkeit - Kalthärtend, einsetzbar ab 10°C - Einsetzbar als Holzporenfüller, zum Deko gießen, Schmuck selber herstellen Durch die Zugabe des UV-Stabilisators BEL91 (in Epoxidharz) wird die Langzeitstabilität erhöht! Ebenfalls kann dieses System mit unseren Farbpigmenten, Farbpasten oder Farbstoffen eingefärbt werden.
Ponal D4 Härter

Ponal D4 Härter

Ponal D4 Härter 250 gr., PNI3N PRODUKTVORTEILE Wasserfeste Verleimungen nach DIN EN 204/D4 Topfzeit für D4-Qualität beträgt 8 Stunden   EIGENSCHAFTEN Härter für Ponal Super 3 zur Herstellung von 2-K D4 Leim Wasserfeste Verleimungen nach DIN EN 204/D4 Topfzeit 8 Stunden Einfache Teilmengenentnahme durch neue spezielle Teilungsskala auf den Flaschen   VERWENDUNGSZWECK Lamellieren von Fensterkanteln Fenstereckverbindungen Erfüllt die i.f.t. Richtlinie „Verkleben von Holzfenstern“ Teil 1 D4   VERBRAUCH: Ca. 150 g/m2 je nach Saugfähigkeit des Untergrundes Artikelnummer: E9190192 Gewicht: 0.25 kg
Beizen

Beizen

Beizen von rostfreiem Stahl Badgröße: Bad 5: 3200 x 1900 x 700 Die Problematik Rost und säurebeständige Stähle gewinnen immer neue Anwendungsbereiche. Werden sie bearbeitet, droht jedoch Spannungsriss oder Lochkorrosion. Abhilfe schafft da das Beizen. Wie kommt es zu Korrosion? Bei der Korrosion handelt es sich um einen elektrochemischen Prozess, der Potentialdifferenz und Elektrolyten voraussetzt. Was ist Spannungskorrosion? Die Spannungskorrosion ist eine der häufigsten und gefährlichsten Korrosionsarten. Auslöser sind mechanische Beanspruchungen der Oberfläche, wie beim Schruppen, Schleifen, Fräsen oder Schneiden vorkommen. Wieso beizen? Beim Glasperlen werden Kleinstpartikel in die Oberfläche eingeschlagen, woraus sich in der Praxis und in Übereinstimmung mit Laborversuchen schlechte Korrosionsschutzwerte zeigen. Deshalb sollte nach dem Glasperlstrahlen gebeizt werden, um diese Fremdkörper, in deren Umgebung sich keine Passivschicht bilden kann, zu entfernen. Wie lange dauert beizen? Die Beizzeiten richten sich nach dem zu beizenden Werkstoff, der vorhandenen Oberflächenbeschaffenheit sowie der gewünschten Oberfläche. Ergebnis Auf der gebeizten Oberfläche der Werkstücke bildet sich nach dem Spülen an der Luft eine Korrosionsschützende Passivschicht. (Passivierung)
Flammhärten

Flammhärten

Mittels speziellen Hochleistungsbrennern wird die Randzone mit ­Leistungen bis zu 2500 kW rasch auf ­Härtetemperatur gebracht und je nach Werkstoff abgeschreckt. Werk­stoffabhängig können Einhärtungstiefen bis zu 40 mm realisiert werden. Vorteile des Flammhärtens • Leistungsbedarf kann einfach angepasst werden • Grosse Einhärtungstiefen realisierbar • Behandlung von sehr grossen ¬ Bauteilen möglich Anwendungsbereiche für Stahl- und Gussteile • Walzen, Wellen, Kolben, Rollen • Kurven • Grosse Zahnräder • Schienen und Leisten • Maschinenbetten • Zylinder (Innen-Ø) Bauteilabmessungen • Bis Ø 800 x 11 000 mm, max. 6 Tonnen • Bis Ø 1400 x 650 mm, max. 2,5 Tonnen • Kubische BT bis 10 000 mm • Maximales Gewicht 10 Tonnen • Grössere Teile auf Anfrage
Glühen und Härten

Glühen und Härten

Öfen zum Härten, Glühen und Anlassen sowie zugehörige Hilfsmittel Blankhärten unter Schutzgas – kein Problem. Eine ganz neue Technologie macht das möglich. Durch die Nutzung einer sehr dünnen Stahldose in Kombination mit unserem speziellen Gasdorn ist das Härten unter Schutzgasatmosphäre problemlos möglich und für die Anwendung in unseren Glüh- und Härteöfen der Baureihe ASM 10 – ASM 50 geeignet. Warmbadöfen für die Wärmebehandlung von Metallen unter Neutralsalz für schnelle und intensive Wärmeübertragung mit hoher Temperaturgenauigkeit. Für Arbeitstemperaturen zwischen 150 °C und 500 °C. Zwischenstufenvergüten mit optimaler Zähigkeit. Zwischenglühen beim Funkenerodieren. Nitroschwärzen und Anlassen ohne Rissgefahr. Exakte Härte und Zähigkeit. Sondermaße auf Anfrage möglich.
Härten

Härten

Das Härten ist ein entscheidender Produktionsschritt, bei dem Zahnräder durch Wärmebehandlung die spezifizierte Kernfestigkeit und Oberflächenhärte erhalten. Dieser Prozess wird von der Wittmann Härterei, einem Schwesterunternehmen, übernommen. Die Wärmebehandlung ist entscheidend für die Langlebigkeit und Leistungsfähigkeit der Zahnräder, die in modernen Getrieben höchsten Beanspruchungen ausgesetzt sind. Wittmann GmbH bietet alle weiteren Produktionsschritte bei der Herstellung von Zahnrädern in ihrem Haus an.
Härten-Durchlauf

Härten-Durchlauf

In den Durchlauföfen werden vorwiegend Massenteile (meistens Schüttgut) gehärtet. Die Werkstücke durchlaufen den Ofen auf einem Förderband (unter Schutzgas­atmosphäre) und gelangen anschliessend an die Erwärmung in ein Ölbad zur Abschreckung.
Härten Martensitisch

Härten Martensitisch

Wärmebehandlung auf hohem Niveau Vergüten (martensitisch) ist ein Härten mit nachfolgendem Anlassen bei hohen Temperaturen. Dabei erzielt man ein feinkörniges Gefüge von hoher Festigkeit und Zähigkeit. Es werden dazu Stähle mit einem Kohlenstoffgehalt von 0,22 – 0,60%C verwendet. Sie sind teilweise legiert. Zum Härten werden Vergütungsstähle auf etwa 820 – 900 °C erwärmt und in Öl abgeschreckt. Angelassen wird auf Temperaturen von etwa 530 – 670°C. Die Härte wird dadurch zwar vermindert, aber die Festigkeit wesentlich erhöht.
Härten

Härten

Unter Härten versteht man eine Wärmebehandlung, bestehend aus Austenitisieren und Abkühlen unter solchen Bedingungen, dass eine Härtezunahme durch mehr oder weniger vollständige Umwandlung des Austenits in der Regel in Martensit erfolgt. Das Austenitisieren ist der Behandlungsschritt, in dem das Werkstück auf Austenitisierungstemperatur gebracht wird und durch vollständige Phasenumwandlung und Carbidauflösung die Matrix des Stahls austenitisch wird. Nach dem Austenitisieren erfolgt das Abkühlen. Damit das gesamte Werkstück ein martensitisches Gefüge annimmt, muss die Geschwindigkeit des Temperatursturzes größer sein als die kritische Abkühlgeschwindigkeit des jeweiligen Stahls. Das Abkühlen kann in verschiedenen Medien erfolgen, die sich charakteristisch durch ihre Abkühlwirkung in den verschiedenen Temperaturbereichen unterscheiden. Nach dem Härten besteht das Gefüge sogenannter übereutektoider Stähle üblicherweise aus Martensit + Restaustenit + Carbid. Dem Anteil dieser Phasen ist z.B. bei der Wärmebehandlung von Werkzeugstählen große Bedeutung beizumessen, da Eigenschaften wie Verschleißfestigkeit und Maßhaltigkeit vom Gefügezustand nach dem Härten beeinflusst werden. Im Prinzip ist jeder Stahl mehr oder weniger gut härtbar. Die Härtbarkeit ist aber entscheidend von der chemischen Zusammensetzung des Stahls abhängig. Unter Härtbarkeit versteht man die Fähigkeit eines Stahls, in der oberflächennahen Zone mehr oder weniger tiefgreifend eine Härte anzunehmen. Der Begriff "Härtbarkeit" beinhaltet die Höhe sowie die Verteilung der Härtezunahme im Werkstück (Einhärtbarkeit). Geeignete Stähle sind niedrig- und hochlegierte Werkzeugstähle. Das Härten wird angewendet, um Bauteile und Werkzeuge eine ausreichende Härte und Festigkeit gegenüber mechanischen Beanspruchungen – z.B. statischer oder dynamischer Verformung durch Zug, Druck, Biegung, Verschleiß – zu verleihen. Zur Durchführung des Härtens benötigen wir von Ihnen folgende Angaben: • Werkstoffbezeichnung • gewünschte Härte mit Toleranzbereich • bei Anlieferung bereits erfolgte Bearbeitung des Werkstückes • ggf. Prüfpunkte und Prüfverfahren • ggf. Isoliervorschrift Ob die gewünschte Härte mit dem angelieferten Werkstoff überhaupt realisierbar ist, muss vorher überprüft werden. Außerdem sollte geklärt werden, ob nur das Härten wie hier beschrieben oder (wie allgemein üblich) Härten und Anlassen gewünscht wird.
Härten

Härten

Das Härten ist das Erwärmen und das anschließende Abkühlen von Stahl mit einer derartigen Geschwindigkeit, dass oberflächlich oder durchgreifend eine erhebliche Härtesteigerung erfolgt. Härten ist das Erwärmen und das anschließende Abkühlen von Stahl mit einer derartigen Geschwindigkeit, dass oberflächlich oder durchgreifend eine erhebliche Härtesteigerung erfolgt. In den meisten Fällen erfolgt das Härten in Verbindung mit einem nachfolgenden Wiedererwärmen, dem Anlassen. In Abhängigkeit vom Werkstoff werden durch das Härten die Härte und die Verschleißfestigkeit verbessert oder wird das Verhältnis von Zähigkeit zu Festigkeit eingestellt. Letzteres bezeichnet man als Vergüten. Nahezu alle technisch interessanten Stahllegierungen wie zum Beispiel Federstähle, Kaltarbeitsstähle, Vergütungsstähle, Wälzlagerstähle, Warmarbeitsstähle und Werkzeugstähle sowie eine Vielzahl hochlegierter rostfreier Stähle wie auch Gusseisenlegierungen sind härtbar. Verfahrensvarianten Schutzgashärten Schutzgashärten ist das Härten von Bauteilen in einer inerten Gasatmosphäre. Es dient dem Schutz der Bauteiloberfläche vor Verzunderung und Oxidation sowie vor Ent- und Aufkohlung. Durch ein geregeltes Kohlenstoff-Potenzial der Schutzgasatmosphäre können Ent- und Aufkohlungen wieder rückgängig gemacht werden. Vakuumhärten Vakuumhärten ist das Härten von Bauteilen unter einem kontrollierten Partialdruck, wobei Temperaturen bis 1.300 °C erreichbar sind. Ziel dieser Verfahrensvariante ist die Schaffung metallisch blanker Werkstückoberflächen, die eine weitere mechanische Bearbeitung unnötig machen. Verbesserte Eigenschaften ◾Hohe Verschleißfestigkeit ◾Ausgezeichnete Härte ◾Verbesserte Duktilität (Vergüten) ◾Erhöhte Zerreißfestigkeit Einsatzgebiete ◾Allgemeiner Maschinenbau ◾Armaturenbau ◾Automobilbau ◾Bergbau ◾Chemische Industrie ◾Druckmaschinenbau ◾Eisenbahntechnik ◾Elektronik/Elektrotechnik ◾Energie- und Reaktortechnik ◾Flugzeugbau ◾Haushaltsgeräteindustrie ◾Hydraulik- und Pneumatikindustrie ◾Kommunikationstechnik ◾Lebensmittelindustrie ◾Mess- und Regeltechnik ◾Pharmazie und medizinischer Gerätebau ◾Textilindustrie ◾Wehrtechnik ◾Werkzeugbau
Härten und Vergüten

Härten und Vergüten

max. Chargengewicht 2500 kg
Lohnhärtung / Lohnhärterei / Härten / Härterei und Zahnradproduktion

Lohnhärtung / Lohnhärterei / Härten / Härterei und Zahnradproduktion

Wir verfügen über eine eigene Härterei mit Abschreckung des Werkstoffes im Polymerbad oder in Öl. Preise richten sich nach Einhärtetiefe, Gewicht und Module der verzahnten Artikel. Preis auf Anfrage. ZWP in Brandenburg härtet Ihre Teile nach Vorgabe. Einsatzhärten mit bis zu 3,0 mm ist keine Seltenheit bei unseren geschätzten Kunden. Wir beliefern bereits Kollegen und Kunden aus folgenden Branchen: Automobilzulieferer, Sondermaschinenbau, Getriebeherstellung, Brückenbau, etc. Einzelhärtungen von Bauteilen oder kleine Serien können ebenso vorgenommen werden und läuft innerhalb einer Charge mit. Unsere Härterei verfügt über Schachtöfen und Doppelkammeröfen. Abschreckungsmöglichkeiten sind Öl oder Polymer. Beachten Sie bitte auch unsere anderen Leistungen und rufen das Firmenprofil auf. Das Zahnradwerk Pritzwalk übernimmt auch als unabhängiges Werk die Herstellung von Zahnrädern, Zahnwellen, Hohlräder mit Innenverzahnung, Zahnkupplungen und Flansche. Wir produzieren und härten erfolgreich seit 1969. ZWP beliefert bekannte Unternehmen und Getriebehersteller mit Verzahnungsartikeln. Sprechen Sie uns gerne an.
Schmieden & Härten

Schmieden & Härten

Schmiede das Eisen, solange es heiß ist Ein besonderer Blickfang im und ums Haus sind geschmiedete Geländer, Handläufe oder Tore. Die rustikalen Konstruktionen passen hervorragend zu älteren oder heimatgeschützten Häusern. Aber auch moderne Gebäude werden durch unsere Eisenkonstruktionen aufgewertet. Wir planen, fertigen und montieren gerne für Sie die unterschiedlichsten Produkte. Auch für Instandsetzungen und Reparaturen von bestehenden Schmiedearbeiten sind wir Ihr regionaler Ansprechpartner. Wir helfen Ihnen gerne, bestehende Konstruktionen wieder in neuem Glanz erstrahlen zu lassen. «Mit guten Werkzeugen lässt es sich müheloser und schneller Arbeiten!» Nachschmieden und Härten von Bauwerkzeugen hat Tradition und ist eine sich lohnende Investition. Die Instandstellung von Werkzeugen kostet weniger als ein neues anzuschaffen. Es kann so auch ideal Ihren Bedürfnissen angepasst werden. Zudem lässt es sich mit einwandfreiem Werkzeug sicherer und schneller arbeiten. Bringen Sie Ihr stumpfes Werkzeug vorbei oder vereinbaren Sie mit uns einen Termin, wann wir es bei Ihnen abholen können.
Härten

Härten

Automatisierte, CNC-gesteuerte Härteverfahren gewährleisten eine hohe Homogenität der Härteergebnisse auch bei großen Chargen. Anlassen der Teile, um die von Ihnen gewünschte Rockwell / Vickershärte zu erzielen, bis zu einer Maximallänge von 3 m. Härten von kleinen Teilen ab 5 mm bis zu sehr großen Teilen mit einer Maximallänge  von 3 m (Vertikal). Für Ihre speziellen Anforderungen stellen wir Spezialinduktoren her, damit optimale Härteergebnisse auch bei schwierig zu härtenden Teilen möglich werden.
Härten

Härten

Um dem Verschleiß Ihrer Werkstücke vorzubeugen und Ihnen eine größtmögliche Langlebigkeit zu geben bietet sich das Härten an. Härten Um dem Verschleiß Ihrer Werkstücke vorzubeugen und Ihnen eine größtmögliche Langlebigkeit zu geben bietet sich das Härten an. Bagemihl - als Ihr zentraler Ansprechpartner - kann diesbezüglich auf verlässliche Kooperationspartner mit viel Erfahrung und perfektem Equipment zurückgreifen und Ihnen somit alle Arten des Einsatzhärtens anbieten. Die Werkstücke können bis zu der von Ihnen vorgegebenen Tiefe gehärtet oder auch mit Gas nitriert werden - ganz wie Sie es wünschen. Bagemihl - wir machen Ihre Werkstücke robust.
Härteverfahren

Härteverfahren

Härteverfahren sind entscheidend für die Verbesserung der mechanischen Eigenschaften von Werkstoffen, insbesondere ihrer Festigkeit und Verschleißfestigkeit. Diese Verfahren werden häufig in der Automobil-, Luft- und Raumfahrt- sowie der Werkzeugindustrie eingesetzt, um die Lebensdauer und Leistung von Komponenten zu erhöhen. Härteverfahren umfassen eine Vielzahl von Techniken, darunter Induktionshärten, Einsatzhärten und Nitrieren. Die Härteverfahren der techniics GmbH bieten eine Kombination aus Präzision, Geschwindigkeit und Flexibilität. Unser erfahrenes Team nutzt modernste Technologien, um sicherzustellen, dass jedes Teil den höchsten Qualitätsstandards entspricht. Wir arbeiten eng mit unseren Kunden zusammen, um maßgeschneiderte Lösungen zu entwickeln, die ihre spezifischen Anforderungen erfüllen und gleichzeitig die Produktionskosten senken.
Härten und Anlassen

Härten und Anlassen

Härten ist das Erwärmen des Stahls auf Härtetemperatur und nachfolgendem Abkühlen mit solcher Geschwindigkeit, dass oberflächlich und durchgreifend eine erhebliche Härtesteigerung durch Martensitbildung eintritt. Überwiegend erfolgt das Härten in Verbindung mit einem nachfolgenden Wiedererwärmen, dem Anlassen. In Abhängigkeit vom Werkstoff werden durch das Härten die Härte und Verschleißfestigkeit verbessert oder das Verhältnis von Zähigkeit und Festigkeit eingestellt.
Härten/Richten

Härten/Richten

Das induktive Randschichthärten bis zu einem Durchmesser von 500 mm und einer Länge von 6.000 mm sowie das nachfolgende Anlassen im Wärmeofen ist in unserem Hause möglich. Wir können damit kurze Durchlaufzeiten und kontrolliert hohe Qualität auch bei gehärteten Bauteilen anbieten. Mit unserer Richtpresse sind wir in der Lage, Härteverzug umgehend zu korrigieren. Weitere Wärme- und Oberflächenbehandlungen werden bei anerkannten Fachfirmen vorzugsweise in unserer Nähe ausgeführt. Dabei können wir durch die Auswahl geeigneter Unternehmen sowie durch unsere permanente Qualitätskontrolle dauerhaft gute Qualität zu marktgerechten Preisen bieten. Hier eine Auswahl möglicher Behandlungen: Vergüten und Glühen, Einsatz- und Salzbadhärten, Nitrieren und Tenifieren, Verzinken und Phosphatieren, Brünieren, Eloxieren und Coatieren, Lackieren und Beschichten
Beschichtungen / Härten

Beschichtungen / Härten

Ihre Zeichnungsteile müssen nach der Fertigstellung beschichtet werden? Kein Problem. Verchromen, Verzinnen, TIC/TIN. Erodierklötze aus 1.2379 gehärtet auf ca. 60 HRC auf Lager.
Härten/Oberflächen

Härten/Oberflächen

Härten / Oberflächen – Die hohe Beanspruchung und die extremen Einsatzgebiete vieler Bauteile und Baugruppen erfordert modernste Härteverfahren und Oberflächenbeschichtungen. Alle Kompetenzzentren der ORCA-Gruppe haben langjärige Erfahrungen und Kenntnisse in diesen Technologien. Zusammen mit unseren langjährigen und zuverlässigen Partnern bieten wir unseren Kunden ein Maximum an Unterstützung in diesen oft sehr komplexen Bearbeitungsverfahren. Hier ergänzen sich unsere Kompetenzzentren vorbildlich mit dem Wissen aus unterschiedlichsten Anwendungen wie z.B. aus der Automotive, Luftfahrt und Hydraulik. Um den vielen unterschiedlichen Anforderungen gerecht zu werden, gibt es eine Vielzahl von ergänzenden Oberflächenbehandlungen, die in der ORCA-Gruppe selbst durchgeführt werden. So z.B. Trowalisieren, Polieren und Finishen in Planetentrommeln, Sandstrahlen und Anlassen von gehärteten Teilen. Zusatzinformationen – Um die Qualität unserer Produkte bei externer Bearbeitung sicherzustellen, werden auditierte Zulieferer mit entsprechenden Qualitätssicherungssystemen ausgewählt und langfristige Partnerschaften angestrebt.
Trocknen & Härten

Trocknen & Härten

Diese Seite befindet sich noch im Aufbau! Um Sie auf gewohntem Niveau informieren zu können, werden wir noch ein wenig Zeit benötigen. Bitte schauen Sie daher bei einem späteren Besuch noch einmal auf dieser Seite vorbei. PDF herunterladen
Härtung von Titan

Härtung von Titan

Bis zur Einführung von ExpaniteHard-Ti, einem interstitiellen Oberflächenhärtungsverfahren für reines und legiertes Titan, war die Oberflächenhärtung von Titan im kommerziellen Maßstab praktisch nicht möglich. Titan ist bekannt für sein geringes Gewicht, seine hohe Festigkeit und seine extreme Korrosionsbeständigkeit. Aufgrund seiner Weichheit ist Titan jedoch für seine schlechte Verschleiß- und Korrosionsbeständigkeit bekannt. Dies schränkt den Einsatz von Titan ein und zwingt Konstrukteure zu Kompromissen. Expanite bietet mit der Einführung von ExpaniteHard-Ti eine radikale Lösung. Interstitielles Härten - auch als Mischkristallhärten bekannt - bedeutet, dass Expanite das Grundmaterial nicht verändert, sondern lediglich Atome während des Wärmebehandlungsprozesses eindiffundiert, was zu einer erheblichen Härtesteigerung führt. Das bedeutet: keine Titannitride, keine Beschichtung und nichts, was von der Oberfläche abplatzen könnte! Mit ExpaniteHard-Ti kann die Oberflächenhärte ca. 800-1000HV erreichen, ca. 5-7 mal höher als bei unbehandeltem Material, ohne die Korrosionsbeständigkeit zu beeinträchtigen. Bemerkenswert ist die Auswirkung der Härte auf die Verschleißfestigkeit, dokumentiert durch einen Verschleißtest nach ASTM G133
Warum Verfestigungsstrahlen

Warum Verfestigungsstrahlen

steigert die Schwingfestigkeit im Zeit- und Dauerfestigkeitsbereich steigert die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion verhindert die Entstehung und Fortpflanzung von Rissen Das Verfahren ist bei allen metallischen Werkstoffen anwendbar! Eine höhere Schwingfestigkeit steigert entweder die zulässige Belastung eines Bauteiles oder die Sicherheit eines vorhandenen Bauteiles wird erhöht. Das Bauteil wird entweder dauerschwingfest oder die Zeitfestigkeit wird erhöht. Beispiele: Höhere Leistung bei gleichem Gewicht oder geringeres Gewicht bei gleicher Leistung Höhere Leistung bei gleicher Abmessung oder kleinere Abmessung bei gleicher Leistung Höhere Leistung bei gleichem Werkstoff oder größere Werkstoffauswahl bei gleicher Leistung Höhere Leistung bei gleicher Oberflächenqualität oder niedrigere Anforderung an die Oberflächenqualität bei gleicher Leistung Die elastische Verformung induziert in der plastifizierten Zone hohe Druckeigenspannungen. Das Bauteil wird durch die induzierte Druckeigenspannung an bzw. unter der Oberfläche von externen Zugspannungen entlastet und die Dauerschwingfestigkeit und die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion wird gesteigert. Gleichzeitig wird die Entstehung und Fortpflanzung von Rissen verhindert. Die Steigerung der Schwingfestigkeit ist bei Bauteilen mit hohen Kerb- und Formfaktoren, bei hohen Torsions- oder Biegespannungen, bei Stoßbelastungen, hochfesten und gehärteten Bauteilen relativ zur Ausgangsfestigkeit am größten. Strahlen lässt sich darüber hinaus zum Verdichten, Reinigen, Strippen, Strukturieren, Aufrauen, Mattieren, Glätten, Entgraten, Abtragen, Trennen, Gravieren und zum Umformen von dünnwandigen Bauteilen im elastischen Bereich einsetzen. Wirkung des Verfestigungsstrahlens Beim Verfestigungsstrahlen werden durch gezielten Beschuss mit durch Pressluft oder Fliehkraft beschleunigten, kugelförmigen Partikeln, die wie winzige Schmiedehämmer wirken, begrenzte plastische und elastische Verformungen in der Bauteilrandschicht erzeugt. Bei der Herz`schen Pressung werden die plastischen und elastischen Verformungen unter der Oberfläche erzeugt. Beide Wirkungen treten stets nebeneinander auf und werden durch die Strahlkenngrößen beeinflusst.
Warum Verfestigungsstrahlen

Warum Verfestigungsstrahlen

steigert die Schwingfestigkeit im Zeit- und Dauerfestigkeitsbereich steigert die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion verhindert die Entstehung und Fortpflanzung von Rissen Das Verfahren ist bei allen metallischen Werkstoffen anwendbar! Eine höhere Schwingfestigkeit steigert entweder die zulässige Belastung eines Bauteiles oder die Sicherheit eines vorhandenen Bauteiles wird erhöht. Das Bauteil wird entweder dauerschwingfest oder die Zeitfestigkeit wird erhöht. Beispiele: Höhere Leistung bei gleichem Gewicht oder geringeres Gewicht bei gleicher Leistung Höhere Leistung bei gleicher Abmessung oder kleinere Abmessung bei gleicher Leistung Höhere Leistung bei gleichem Werkstoff oder größere Werkstoffauswahl bei gleicher Leistung Höhere Leistung bei gleicher Oberflächenqualität oder niedrigere Anforderung an die Oberflächenqualität bei gleicher Leistung Die elastische Verformung induziert in der plastifizierten Zone hohe Druckeigenspannungen. Das Bauteil wird durch die induzierte Druckeigenspannung an bzw. unter der Oberfläche von externen Zugspannungen entlastet und die Dauerschwingfestigkeit und die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion wird gesteigert. Gleichzeitig wird die Entstehung und Fortpflanzung von Rissen verhindert. Die Steigerung der Schwingfestigkeit ist bei Bauteilen mit hohen Kerb- und Formfaktoren, bei hohen Torsions- oder Biegespannungen, bei Stoßbelastungen, hochfesten und gehärteten Bauteilen relativ zur Ausgangsfestigkeit am größten. Strahlen lässt sich darüber hinaus zum Verdichten, Reinigen, Strippen, Strukturieren, Aufrauen, Mattieren, Glätten, Entgraten, Abtragen, Trennen, Gravieren und zum Umformen von dünnwandigen Bauteilen im elastischen Bereich einsetzen. Wirkung des Verfestigungsstrahlens Beim Verfestigungsstrahlen werden durch gezielten Beschuss mit durch Pressluft oder Fliehkraft beschleunigten, kugelförmigen Partikeln, die wie winzige Schmiedehämmer wirken, begrenzte plastische und elastische Verformungen in der Bauteilrandschicht erzeugt. Bei der Herz`schen Pressung werden die plastischen und elastischen Verformungen unter der Oberfläche erzeugt. Beide Wirkungen treten stets nebeneinander auf und werden durch die Strahlkenngrößen beeinflusst.
Warum Verfestigungsstrahlen

Warum Verfestigungsstrahlen

steigert die Schwingfestigkeit im Zeit- und Dauerfestigkeitsbereich steigert die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion verhindert die Entstehung und Fortpflanzung von Rissen Das Verfahren ist bei allen metallischen Werkstoffen anwendbar! Eine höhere Schwingfestigkeit steigert entweder die zulässige Belastung eines Bauteiles oder die Sicherheit eines vorhandenen Bauteiles wird erhöht. Das Bauteil wird entweder dauerschwingfest oder die Zeitfestigkeit wird erhöht. Beispiele: Höhere Leistung bei gleichem Gewicht oder geringeres Gewicht bei gleicher Leistung Höhere Leistung bei gleicher Abmessung oder kleinere Abmessung bei gleicher Leistung Höhere Leistung bei gleichem Werkstoff oder größere Werkstoffauswahl bei gleicher Leistung Höhere Leistung bei gleicher Oberflächenqualität oder niedrigere Anforderung an die Oberflächenqualität bei gleicher Leistung Die elastische Verformung induziert in der plastifizierten Zone hohe Druckeigenspannungen. Das Bauteil wird durch die induzierte Druckeigenspannung an bzw. unter der Oberfläche von externen Zugspannungen entlastet und die Dauerschwingfestigkeit und die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion wird gesteigert. Gleichzeitig wird die Entstehung und Fortpflanzung von Rissen verhindert. Die Steigerung der Schwingfestigkeit ist bei Bauteilen mit hohen Kerb- und Formfaktoren, bei hohen Torsions- oder Biegespannungen, bei Stoßbelastungen, hochfesten und gehärteten Bauteilen relativ zur Ausgangsfestigkeit am größten. Strahlen lässt sich darüber hinaus zum Verdichten, Reinigen, Strippen, Strukturieren, Aufrauen, Mattieren, Glätten, Entgraten, Abtragen, Trennen, Gravieren und zum Umformen von dünnwandigen Bauteilen im elastischen Bereich einsetzen. Wirkung des Verfestigungsstrahlens Beim Verfestigungsstrahlen werden durch gezielten Beschuss mit durch Pressluft oder Fliehkraft beschleunigten, kugelförmigen Partikeln, die wie winzige Schmiedehämmer wirken, begrenzte plastische und elastische Verformungen in der Bauteilrandschicht erzeugt. Bei der Herz`schen Pressung werden die plastischen und elastischen Verformungen unter der Oberfläche erzeugt. Beide Wirkungen treten stets nebeneinander auf und werden durch die Strahlkenngrößen beeinflusst.
Tempern

Tempern

Der Vorgang des Temperns ist eine Art von Quarzglasbearbeitung, die spannungsfreies Quarzglas entstehen lässt. Hierbei wird das Quarzglas hoch erhitzt und bleibt zugleich unterhalb von der Schmelztemperatur. Die Atome können dadurch in die richtige Position gelangen. Beschriften Feuerpolieren Reparatur & Service Leistungen Reparatur & Service Feuerpolieren Leistungen Feuerpolieren Drehbankarbeiten Leistungen Drehbankarbeiten Reinigung Leistungen Reinigun
Tempern

Tempern

Auch bei Zink-Legierungsschichten sind im Anschluss an die galvanische Abscheidung Wärmebehandlungsprozesse zur Effusion von Wasserstoff umsetzbar. Industrie und Wissenschaft lassen gegenwärtig die Diskussion um eine mögliche Sonderstellung von Zink/Nickel-Überzügen auf höherfesten Bauteilen ohne anschliessende Temperprozesse zu. Wenn Details zur Herstellungskette und über das Belastungskollektiv in der Anwendung bekannt sind, kann VK einen wesentlichen Teil zur Risikoabschätzung des Desingverantwortlichen beitragen.
Ihre Härterei

Ihre Härterei

für höchste Qualitätsansprüche Schnelligkeit einzigartigen Organisationsstruktur kundenorientierten Flexibilität
Induktives härten

Induktives härten

Das induktive Härten ist eine äußerst wirtschaftliche Form des Randschichthärtens. In vielen Industrien findet das Induktionshärten seine Anwendung, wie z.B. der Automobilindustrie, dem Werkzeugbau und Landmaschinenbau. Angepasst an Ihre Anforderungen stehen Ihnen in der Härterei mehrere Induktionshärteanlagen zum induktiven Härten für Werkstücke zur Verfügung. Ihre Vorteile durch ein induktives Härten im Lohn bei der HTB Härtetechnik: - Nutzen Sie die gezielte und sogar auf Wunsch partielle Härtung Ihres Bauteils - Profitieren Sie zeitlich von den extrem kurzen Härteprozessen innerhalb von Sekunden oder sogar unter 1 Sekunde - Erwärmung direkt im Werkstück - Geringerer Energieverbrauch als im Vergleich zu anderen Erwärmungsmethoden - Geringere Maß- und Formänderungen als im Vergleich zu anderen Erwärmungsmethoden - Sehr hohe Reproduzierbarkeit des Prozesses durch die bedienerunabhängige Bearbeitung - Sie sparen Geld, weil die Induktionshärteanlagen bedarfsgerecht sofort betriebsbereit sind und Leerlaufkosten somit vermieden werden Jetzt Neu: Richtpressen am Standort Schwerte Am Standort Schwerte steht Ihnen ab sofort eine Richtpresse für 7 m Profile zur Verfügung. Gehärtete Profile können somit direkt vor Ort gerichtet werden. Jetzt anfragen
Härten, Anlassen, Vergüten für individuelle Anwendungen

Härten, Anlassen, Vergüten für individuelle Anwendungen

Mit unseren Anlagen werden die Eigenschaften der Werkstoffe verändert. Dabei gibt der Betreiber vor, welche Eigenschaften das Werkstück erreichen soll, die Induktionsanlage wird dementsprechend ausgeführt. Durch eine definierte Leistungsübertragung auf das Bauteil können ganze Chargen von Bauteilen wiederholgenau der Wärmebehandlung unterzogen werden. Wir bieten u.a. folgende Anlagen in dieser Kategorie an: - Kettenvergütungsanlagen - Vertikale Vorschubhärtemaschinen - Randschichthärteanlagen - Rohrvergütungsanlagen - Einzelstabvergütungsanlagen