Finden Sie schnell lasers für Ihr Unternehmen: 3290 Ergebnisse

Entwicklung von Lichtleiter

Entwicklung von Lichtleiter

Die Konstruktion und Entwicklung von Lichtleitern und Komponenten wird in enger Zusammenarbeit mit dem Kunden erstellt. Zu den technischen Spezifikationen werden auch applikationsspezifische und wirtschaftliche Faktoren bereits in frühstem Design- und Entwicklungsstadium berücksichtigt. Machbarkeit Entwicklung und Design Prototypenbau Dokumentation Serienfertigung
Laserschneiden

Laserschneiden

ADMEDES LASERTECHNOLOGIE – DIE FAKTEN - Laser-Mikrofertigung (Abtragen, Schneiden, Profilieren und Bohren) - Ultrakurzpulslaser (Femto- & Pikosekunden), Faserlaser - Laserschweißen: Unterschiedliche Materialkombinationen - Oberflächenveredelung: Elektropolieren, Blue Oxide (patentierter Oberflächenveredelungsprozess), Mikrostrahlen, chemisches Ätzen und Polieren, mechanisches Polieren, Bürsten, Passivieren - Materialformate: Rohr, Blech, Draht - Rohr-Außendurchmesser: 0,2 mm bis 40 mm - Dicke der Rohrwand: 20 µm bis 1 mm - Minimale Schnittbreite: 5 µm - Kleinstmögliche Stegbreite: < 25 µm
Messung geometrischer Größen

Messung geometrischer Größen

Mittels automatisierter optischer Messung kann die Stichproben­Prüfung durch eine 100%-Prüfung ersetzt werden. Auch komplexe Baugruppen und Teile können erfasst und schnell bewertet werden. Hochwertige Optiken und hochauflösende Kameras ermöglichen eine hohe Messauflösung und Genauigkeit. Durch Weitergabe der Prüfergebnisse an die Steuerung der Anlage können NIO-Teile sofort aussortiert werden.
LASERVERMESSUNG

LASERVERMESSUNG

Vermessen von Rundachsen und Winkelköpfen mit anschließender Kompensation auch außerhalb des Drehzentrums (offaxis) Maschinenvermessung auf Position, Geradheit, Nicken, Rollen Gieren in einer Messung Leistungsgebiet: Europaweit
Laserschneiden

Laserschneiden

In unserem Unternehmen schneiden wir hauptsächlich Stahl, CrNi-Stahl und Aluminium. Unsere Laserschneidanlagen von LVD und TRUMPF können auf einem Arbeitsbereich von max. 4000 x 2000 mm folgende Materialien bearbeiten: - Stahl (S235, S355) bis 25 mm - CrNi-Stahl (1.4301, 1.4571) bis 25 mm - Aluminium bis 30 mm - Kupfer sowie Messing nach Anfrage
Lasermarkierer

Lasermarkierer

Nill + Ritz zählt zu den führenden Anbietern im Bereich der Markierlaser-Technologie mit renommierten Kunden. Im Unterschied zu vielen Marktbegleitern verfügen wir über einen selbst entwickelten Marki Nill+Ritz Lasersysteme lassen sich in automatische, halbautomatische oder komplexe Fertigungslinien integrieren. Natürlich sind sie auch als Beschriftungsstationen erhältlich. Aus Überzeugung entwickeln und produzieren wir am Standort Deutschland. Unsere System sind daher Qualitätsgaranten und erfüllen in puncto Genauigkeit, Lebensdauer und Effizienz die Wünsche anspruchsvollster Kunden aus Automobilindustrie, Med-Tech sowie Luft- und Raumfahrt. Beschriftungsverfahren: Lasern
Lasergravuren

Lasergravuren

Als Dienstleister für Laserbeschriftung im Industriebereich bieten wir eine zuverlässige Lösung für die dauerhafte Kennzeichnung von Produkten und Bauteilen (Lasergravur/Anlassverfahren). Die Lasergravur und das Anlassbeschriften sind beide Verfahren, die zur Kennzeichnung oder Markierung von Materialien verwendet werden, weisen jedoch einige Unterschiede auf: +Arbeitsprinzip: Die Lasergravur verwendet einen hochenergetischen Laserstrahl, um Material von der Oberfläche zu entfernen oder zu verdampfen, während das Anlassbeschriften die Oberfläche des Materials lokal erhitzt, um eine Farbänderung oder Oxidation zu erzeugen. +Materialien: Die Lasergravur ist für eine breite Palette von Materialien geeignet, darunter Metalle, Kunststoffe, Holz, Glas und Stein, während das Anlassbeschriften auf Metalle wie Stahl, Edelstahl, Aluminium und Titan beschränkt ist. +Markierungstiefe und -qualität: Die Lasergravur kann sowohl oberflächliche als auch tiefe Markierungen erzeugen, während das Anlassbeschriften eine oberflächliche Markierung erzeugt. Beide ermöglichen präzise und feine Details. +Geschwindigkeit und Effizienz: Die Lasergravur ist schneller als das Anlassbeschriften, insbesondere bei der Bearbeitung komplexer Designs oder großer Stückzahlen, während das Anlassbeschriften etwas längere Bearbeitungszeiten erfordert. Beide Verfahren haben ihre spezifischen Vor- und Nachteile und werden je nach den Anforderungen des Projekts und den Eigenschaften des Materials ausgewählt. Die Lasergravur bietet eine größere Vielseitigkeit und Präzision, während das Anlassbeschriften oft für Metalle bevorzugt wird, die aufgrund ihrer Härte oder Zusammensetzung nicht für die Lasergravur geeignet sind. Wir lasern für Sie Datamatrix-Code (DMC), QR-Codes, Nummerierungen, Logos und weiteres selbst auf komplexe Bauteile.
Linien- Kreuzlaser/Positionierlaser

Linien- Kreuzlaser/Positionierlaser

Leistungsfähige Linienlaser in allen Grössen Von Mini bis Maxi - das MediaLas Linienlaser Baukastensystem findet immer die passende Lösung. In allen Farben, in allen Leistungen, in allen Grössen und in allen Linienwinkeln. Selbst ein Unterwasserbetrieb ist mit unseren IP68 Modulen möglich. Kreuzlaser und Positionierlaser Neben den "normalen" Linienlasern bieten wir auch eine breite Auswahl an Kreuz- und Positionierlasern, mit speziellen Laserbildern und in allen Bauformen. Sonderlösungen Mit zahlreichen Kunden haben wir bereits innovative und produktive Sonderlösungen entwickelt. Angefangen von der einfachen Zeitschaltung bis hin zum RGB Weisslicht Linienlaser zur Strömungsvisualisierung - bei uns wird Ihnen geholfen! Beispiele sind: - Fahrzeugpositionierung im Crashtest - Sicherheitsmarkierung an Fahrzeugen - Laufweganzeige - Beleuchtung von Sprühnebel - Spielfeldmarkierung im Schwimmbad etc. Bestellen im Online Shop Der MediaLas Online Shop bietet ein sehr breites Sortiment an Linienlaser, Positionierlaser, Kreuzlaser und weiteren Produkten, in zahlreichen Konfigurationen. So lässt sich jeder Laser auf nahezu jede Anwendung anpassen. Hallenmarkierung mit Laser Linienlaser Komplettset Wasserdichter Linienlaser Positionierlaser "Fadenkreuz" Bereichsmarkierung mit Laser Grüner Kreuzlaser Fahrwegmarkierung Miniatur Linienlaser
Laserschweißen von Kunststoffen

Laserschweißen von Kunststoffen

Auch bei Kunststoffprodukten ersetzt der Laser klassische Verbindungstechnologien und erzielt damit unerreichte Qualität. Laser erschließt durch seine spezifischen Vorteile ganz neue Einsatzgebiete und Märkte. Neue Anwendungen und Werkstoffkombinationen Das Kunststoffschweißverfahren zeigt seine Vorzüge, wenn hohe Anforderungen an die Schweißung und die Prozesssicherheit gestellt werden. Der Laserstrahl berührt die Oberfläche nicht, kann die Energie exakt dosiert einbringen und sorgt für absolut dichte, optisch einwandfreie und partikelfreie Schweißungen. Der Schweißprozess beim Laserschweißen von Kunststoff Für Laserstrahlen lassen sich zwei Arten von Kunststoffen verwenden: lasertransparente und -absorbierende. Die meisten Thermoplaste lassen sich von typischen Laserwellenlängen einfach durchstrahlen. Mit Beimengungen im Kunststoff aber, werden sie absorbierend. Wenn der Laserstrahl auf eine absorbierende Fläche trifft, wird seine Energie in Wärme umgewandelt. Beim Laser-Durchstrahlschweißen liegt ein für die Laserwellenlänge transparentes Material über dem Absorber. Ein Spannwerkzeug presst die Fügepartner aufeinander. Der Laser durchstrahlt das transparente Element und setzt den Laserfokus in die Schweißebene. Die Laserenergie schmilzt die Oberfläche des absorbierenden Materials auf. Durch den Fügedruck der Spannvorrichtung entsteht eine Wärmeleitung, sie plastifiziert die Berührungsfläche des transparenten Materials. Nach dem Wiederverfestigen ist die Berührungszone zuverlässig und dauerhaft geschweißt. Qualitätssicherung Bei dem Laser-Kunststoffschweißen sind komplexe dreidimensionale Designs kein Problem. Der Strahlkopf selbst berührt das Material an keiner Stelle. Auch schwer zugängliche Bereiche oder dicke Schichten werden sicher verbunden. Dazu kommen ständig neue Werkstoffe und vielfältige Kombinationsmöglichkeiten. Die in den Prozess integrierbaren Qualitätssicherungsmaßnahmen sind die Basis für ein lückenloses Tracking. Sie reduzieren den Prüfaufwand und geben schnell Hinweise auf Fehlerquellen, z.B. veränderte Materialeigenschaften von Rohlingen: • Fügewegüberwachung – Schweißung bis zum Erreichen einer definierten Setzung. Die Fügewegmessung in Relation zur Schweißzeit erlaubt sichere Rückschlüsse auf die Prozessqualität. • Die Pyrometerkontrolle ermittelt kontinuierlich Temperaturverläufe über die gesamte Schweißnaht. Das Verfahren erkennt Lücken oder Partikel in der Schweißnaht durch Abweichungen von der Sollkurve. • Ein integrierter Transmissionstester überprüft die Transmissionseigenschaften der verwendeten Materialien und Bauteile vor und während des Schweißprozesses. • Durch die Reflexionsdiagnostik, welche die Lichtreflexion an Materialschichten auswertet, lassen sich verlässliche Aussagen über die Qualität der Schweißnaht treffen Mehr als nur Auftragsfertigung Am Produktionsstandort Fürth lassen sich mit unseren kompetenten Mitarbeitern aus den Bereichen Prozessentwicklung und Produktion äußerst anspruchsvolle Komponenten wirtschaftlich in hoher Qualität fertigen. Als einer der ersten Anwender dieser innovativen Fügetechnologie verfügt LaserMicronics über umfassende Erfahrungen mit Materialien, Werkzeugen, Applikationen und Layout. LaserMicronics entwickelt gemeinsam mit dem Kunden innovative und praxisgerechte Lösungsansätze und setzt diese sowohl in kleinen als auch in großen Serienproduktionen um. Bei Bedarf steht ein Reinraum zur Verfügung. Laser-Kunststoffschweißen mit LaserMicronics • Sicherer, wirtschaftlicher und hygienischer Fügeprozess • Kompetente Beratung aus Sicht des Laserschweißens, Prototyping, Klein- und Großserienproduktion für ein optimales Produktlayout • Hohe Flexibilität • Sichere Qualitätsüberwachung im Schweißprozess • Umfassende Erfahrung bei Produkten für die Elektronik-, Automobil- und Medizinbranche.
Laserhärten

Laserhärten

•Keine besondere Vorbehandlung erforderlich •Kein externes Kühlmedium erforderlich •Höchste Prozesssicherheit und Reproduzierbarkeit •Härten von fertig bearbeiteten Teilen ohne Nachbearbeitung •Präzise Wärmeeinbringung auch an Kanten, Nuten und Ecken •Einhärtetiefe bis zu 2 mm •Lokales Härten nur an den erforderlichen Stellen durch applikationsangepasste Strahlformung •Geringe Wärmeeinbringung und daher kein oder geringer Verzug •Reproduzierbares Härteergebnis •Bearbeitung von 3D-Konturen
Laserkonfektionierung

Laserkonfektionierung

Laserzuschnitte werden häufig verwendet, um Textilien und Kunststoffe wie PP (Polypropylen), PA (Polyamid), PE (Polyethylen) und PLA (Polylactid) in verschiedenen Anwendungen zu schneiden. Laserzuschnitte werden häufig verwendet, um Bspw. Textilien und Kunststoffe wie PP (Polypropylen), PA (Polyamid), PE (Polyethylen) und PLA (Polylactid) in verschiedenen Anwendungen zu schneiden. Die Maße für diese Laserzuschnitte betragen normalerweise 90 cm x 120 cm, und die Stärke beträgt max 5 mm. Laserzuschnitte bieten präzise und saubere Schnitte, die eine hohe Genauigkeit und Konsistenz gewährleisten. Sie ermöglichen auch komplexe Formen und Muster, die mit herkömmlichen Schneidemethoden schwer zu erreichen wären. Diese Laserzuschnitte können in verschiedenen Branchen eingesetzt werden, wie zum Beispiel in der Bekleidungsindustrie, der Automobilindustrie, der Verpackungsindustrie und vielen anderen.
Laserteile

Laserteile

Per Lasertechnik steht uns ein im Höchstmaß flexibles Beschnittwerkzeug zur Verfügung. Auch bei aufwendig geformten Blechumformteilen erreichen wir damit kürzeste Durchlaufzeiten Nutzen Sie dabei sowohl die maschinenunabhängige Programmierung als auch die anschließende Messdatenrückführung aus der CNC-Koordinatenmesstechnik, um die Beschnittanpassung kostengünstiger zu gestalten. Im Prototypenbereich sind Beschnitt- und Lochbildveränderungen schnell und kostengünstig umsetzbar. Das kraftlose Einwirken auf das Werkstück und das problemlose Bearbeiten auch komplizierter Umrisslinien an umgeformten Bauteilen sind die bestechenden Vorteile des Laserschneidens. Selbstverständlich konzipieren und fertigen wir für Ihr Bauteil auch die Laseraufnahme. Unser hochmoderner Maschinenpark besteht aus höchst effizienten 3D - CO² Laserschneidanlagen der Firma TRUMPF mit einem max. Arbeitsbereich von 4.000 mm x 2.000 mm x 1.500 mm.
Rundlaufprüfgeräte, Laser Messtechnik, 3D-Vermessung

Rundlaufprüfgeräte, Laser Messtechnik, 3D-Vermessung

Prüfdurchgänge in der Produktion von Schleifwalzen können beschleunigt werden, bei gleichzeitiger Verbesserung der Genauigkeit Ausgangslage Der Anwender produziert Schleifwalzen, die im Hinblick auf Rundlauf und innere/äußere Rundheit untersucht werden. Bislang wird die Einhaltung der Toleranz stückweise manuell geprüft, wobei aus Kostengründen stets nur ein kleiner Teil der Chargen der Produktionslinie entnommen wird. Kritische Punkte dieser Anwendung Die Prüfung ist im Mikrometerbereich durchzuführen und daher durchaus anspruchsvoll. Hinzu kommt, daß die Schleifwalzen nicht nur groß bemessen sind, sondern auch sperrig, was die Handhabung im Ablauf zusätzlich erschwert. Lösung von QuellTech QuellTech Q6-C15-82 Laser Scanner arbeiten berührungslos und können bei hervorragender Wiederholgenauigkeit eine 100% Oberflächenprüfung vollständig im Produktionsablauf durchführen – bei einer Zykluszeit von 5 Sekunden. In dieser Anwendung wird ein Scanner zur Inspektion des Innen- und ein Scanner für den Außenkreis (gleichzeitig auch für die Oberfläche) eingesetzt. Die Prüfungen laufen simultan und die 3D Punktwolken mit fast 5 Mio. Punkten werden in einen Mess-Algorithmus eingesetzt, der den Präzisionsanforderungen des Kunden entspricht. Vorteile für Anwender Dank der schnellen und innovativen Q6-C15-82 Laserscanner von QuellTech konnte der Prüfdurchgang erheblich beschleunigt und seine Genauigkeit verbessert werden. Auch Arbeitskosten konnten dank dieser vollständig automatisierten Qualitätskontrolle eingespart werden. Weiterhin wurden falsch-positive Ergebnisse eliminiert und somit das Vertrauen in die Verlässlichkeit der Qualität erheblich verbessert. Gewicht:: 2 Kg Messverfahren:: Laser Triangulation Integration:: Komplettlösung, inklusive Anwendersoftware ist möglich
-Laser – die nächste Generation

-Laser – die nächste Generation

Taufenbach produziert neuartige Laserstrahlquellen für Industrie und Medizin. Die patentierten Laser sind 10 mal kleiner und leichter als vergleichbare Systeme. Mit herausragenden Strahlparametern und kurzen Pulsanstiegszeiten ist die Technologie eine absolute Weltneuheit. Eine Hauptanwendung für unsere Laser ist das berührungslose Markieren am Fließband. Lasermarkiersysteme auf Basis der Taufenbach Technologie sind eine Alternative zu den etablierten Tinten-Strahl-Systemen. Ultrakompakte Laserröhre, 470 Gramm leicht. Strahlprofil TM00.
Laserschneiden

Laserschneiden

Unser hochmodernes Laser-Zentrum ermöglicht uns präzise Zuschnitte zu äußerst wirtschaftlichen Konditionen, mit kurzen Durchlaufzeiten und hoher Produktivität. CNC-Laserschneidtechnik ermöglicht hohe Schnittgeschwindigkeit, präzise Schnittführung auch bei kompliziertesten Formen sowie oxidfreie Schnittflächen. Durch den Wegfall der üblichen Werkzeuge ist die Laserschneidtechnik auch ideal für kleine und mittlere Serien, für Nullserien, Einzelstücke und Prototypen oder großformatige Teile wie Hauben, Gehäuse und Verkleidungen. Flachbettlaser Trumpf TRU3040 4 kW - 4x2 m Leistungswerte: Edelstahl: 16 mm Normalstahl: 20 mm Aluminium: 10 mm
Reverse Engineering

Reverse Engineering

Mit Reverse Engineering eröffnet sich ein neues Feld der Konstruktion. Anders als im allgemein Üblichen, wird beim Reverse Engineering zunächst das Endprodukt bzw. die Endfunktion betrachtet und ausgehend davon das Bauteil konstruiert. In Verbindung mit einem 3D-Scanner lassen sich z.B. auch existierende Gegenstände, für die es aus Altersgründen keine CAD-Daten mehr gibt oder die direkt gefertigt worden sind, recht einfach vermessen und bearbeiten. Im Konstruktionsprogramm z.B. SolidWorks kann dann beispielsweise das Bauteil noch mit zusätzlichen Funktionen wie Kühlung oder Leichtbaustrukturen versehen werden. Unsere Konstrukteure haben dazu entsprechende Schulungen absolviert und werden stets auf den aktuellen Stand der Entwicklung gehalten. Zum 3D-Scanner Der Vorteil liegt auf der Hand: schnelle und zuverlässige Konstruktionen zu kostengünstigen Bedingungen.
Laser

Laser

Johnson Level bietet ein komplettes Spektrum an Wasserwaagen, Lasern und Layout-Werkzeugen, die professionellen Handwerkern helfen, ihre Arbeit genauer, schneller und zuverlässiger zu erledigen.
Inline-Testsysteme, 3-D Laser-Scanner, Qualitätskontrolle

Inline-Testsysteme, 3-D Laser-Scanner, Qualitätskontrolle

Umstellung von manuellen auf automatisierten Prüfprozess, senkt imens die Anzahl an falsch-positiven und falsch-negativen Ergebnissen in der Produktion von Rasierklingen. Unser Kunde stellt seit über 50 Jahren Rasierklingen her und beabsichtigt, durch die Integration von 3D Laserscannern in der Produktion, seinen Qualitätssicherungsablauf zu verbessern. Bis jetzt wurden zu diesem Zweck einzelne Proben gezogen und die Eigenschaften der Klinge manuell überprüft. Kritische Punkte dieser Anwendung Die manuelle Vermessung einer Klinge in Bezug auf Höhe und Winkel ist nicht nur zeitaufwändig, sondern auch fehleranfällig. Schon die Probenahme selbst ist statistisch möglicherweise willkürlich und daher nicht notwendigerweise repräsentativ. Dies führt häufig zu falschen Schlussfolgerungen. Lösung von QuellTech Für diese Aufgabe wurde der QuellTech Q6-45 Laserscanner gewählt, da er die strengen Anforderungen (± 0,01 mm und ± 0.1 °) am ehesten erfüllt. Weiterhin wurde von QuellTech eine 3D Software eingerichtet, die Höhe sowie wechselseitigen Abstand und Winkel für jede einzelne Klinge liefert. Einbaufehler wie gespreizte oder zusammengezogene Klingen werden ebenfalls erfolgreich erkennt. Vorteile für den Kunden Mit dem QuellTech Präzisions-Laserscanner kann der Kunde fortan auf Probenahme verzichten und kann stattdessen eine Inline-Messung mit bis zu 150 Klingen pro Minute durchführen. Dies beschleunigt nicht nur die gesamte Prüfung, sondern senkt auch drastisch die Anzahl an falsch-positiven und falsch-negativen Ergebnissen. Abmessungen: 13x24x7 cm (LxBXH) Gewicht: 1,6 kg
Fluoreszenz-Mikroskope

Fluoreszenz-Mikroskope

Wir entwickeln Epifluoreszenz-Mikroskope mit einer Einzelfluoreszenz bis hin zu 12 Fluoreszenzen in wenigen Sekunden. Realisiert mit Standard-Kameras oder hochempfindlichen Sensoren. Wir bauen unsere eigenen Optiken, Filter und ultra-kompakten hocheffizienten LED-Lichtquellen. Wir kümmern uns um die komplette Automatisierung - alles aus einer Hand, alles in eigenem Haus. IM•compact L als digitales Fluoreszenzmikroskop Das neue IM·compact L wurde speziell für die Fluoreszenzanalyse von definierten Aufgabenstellungen entwickelt. Eine integrierte Fluoreszenz LED, eine empfindliche Kamera, ein entsprechender dichroitischer Filter und Sperrfilter ermöglichen ein spezielles Fluoreszenzsignal. Nicht mehr und nicht weniger. Das im Moment verfügbare IM ist auf die Darstellung des GFP (grün fluoreszierendes Protein) ausgelegt. Typische Anwendungsgebiete sind: - Darstellung biologischer Prozesse in vivo - Verwendung als Reportergen in der Molekularbiologie - Pflanzenforschung Medikamentenenforschung - Darstellung anaerober Organismen in der Bio-Treibstoffherstellung oder der Abwasseranalyse Multi-Fluoreszenz-Screening-Zytologie-Mikroskop Wir arbeiten erfolgreich an der Implementierung innovativer Mikroskoptechnologien in Cell Screening Maschinen und Mikrofluidik-Anwendungen. - Fluoreszenz-Mikroskop für hohen Durchsatz mit mehreren Wellenlängen - vollständig invertiertes Mikroskop, gekoppelt an ein ultraleichtes Filterrad (8 Filter) - synchronisierte Multi-Wellenlängen-LEDs - integrierte Lieferkette - integrierte Multi-Megapixel-Fluoreszenz-Kamera - integrierte Hochgeschwindigkeits-X-Y-Z-Well-Plate Positionierung - alle Controller und Treiber sind onboard Spezielle Techniken innerhalb eines OEM-Fluoreszenzmikroskops Um ein automatisiertes Fluoreszenzmodul für bis zu 16 Fluoreszenzen in einem Modul zu erstellen, benötigen Sie: - Autofokus Z-Achse - hochpräzise X-Y-Bewegung (Wir bewegen das Mikroskop, nicht die Probe) - ultra-kompakte Multi-Hochleistungs-LED-Lichtquelle (bis zu 6 LEDs) - ultra-schnelles Filterrad - fortschrittliche Kameratechnik im Inneren - kompakter Steuerungsaufbau und Software-Framework für die Synchronisierung - etc.
Lasergravuren

Lasergravuren

Mit unserem Lasersystem lassen sich Gravuren auf Acrylglas aber auch auf vielfältigen anderen Materialien durchführen. Einsatzgebiete für Sie als Kunde der BSA Kunststofftechnik sind so vielfältig wie Ihre Ideen. Buchstaben, auch selbstklebend Werbetechnik Laden- und Messebau Architekturmodellbau Displays POS Materialien Außen- und Innenbeschilderung, auch beleuchtet Acryltrophäen für Ihre Veranstaltung
Laserbearbeitung

Laserbearbeitung

Laser-Beschriftungen Laserschweißen von Nirosta-Bauteilen Wir verwenden Lasertechnik, um individuelle Schriftzüge, Logos und Symbole auf Oberflächen von Tiefziehteilen anzubringen. Dieses Verfahren wertet Komponenten optisch auf und ermöglicht in Kombination mit hochwertiger Oberflächenveredelung ansprechendes Design
Laserstrukturierung

Laserstrukturierung

Hochpräzise Strukturierung mittels Laser Weitere Anwendungsfelder unserer Pikosekunden-Laserstrukturierung umfassen die Dünnschichtstrukturierung und die Strukturierung von Keramiken, Gläsern, Metallfolien und vieler weiterer Materialien mit sehr hohen Anforderungen an Geometrie und Formtreue. Für die Anpassung von gedruckten Dickschicht-Widerständen bieten wir sowohl Lasertrimmverfahren basierend auf der Querschnittsverringerung durch Einschneiden, aber auch das sogenannte Lasershaping an. Die Laserstrukturierung mit einem gepulsten UV-Pikosekundenlaser bietet den Vorteil der Bearbeitung mit minimierten thermischen Einflusszonen. Miniaturisierte Schaltungen Die von uns entwickelten Technologien ermöglichen die hochpräzise Strukturierung von ungebrannten, siebgedruckten Dickschichten auf LTCC-Grünfolien und die Herstellung von Mikro-Vias, sowie die Strukturierung von Schichten auf gebrannten keramischen Substraten, Wafern oder Gläsern. Die Strukturierung kann dabei schnell und flexibel an geänderte Designs angepasst und vollständig in die LTCC-Prozesskette integriert werden. Mit minimalen Strukturbreiten bis zu 10 µm wird eine Lücke zwischen dem auf wenige Materialien begrenztem Fine-Line-Siebdruck und aufwendigen lithografischen Strukturierungstechnologien geschlossen. Gleichzeitig können wir den Lagenversatz von vergrabenen Strukturen in Multilayeraufbauten auf bis zu 2,5 µm und kleiner reduzieren. Erst dadurch werden hochgradig miniaturisierte Schaltungen in LTCC ermöglicht.
Tunable Diode Lasers - Diodenlaser

Tunable Diode Lasers - Diodenlaser

Tunable, single-frequency lasers not only for quantum technologies Tunable single-frequency diode lasers utilize a laser diode and a frequency selective element like a grating for laser frequency selection and tuning. They are available for individual wavelengths between 190 nm and 4000 nm, and deliver narrow-linewidth emission that is tunable – in some systems up to 120 nm wide without a single mode-hop. Such lasers can be amplified either in stand-alone amplifiers or in complete Master Oscillator Power Amplifer (MOPA) systems to reach CW powers up to 4 W. Most of TOPTICAs amplified systems utilize tapered amplifiers. Frequency-converted lasers extend the accessible spectral range in the UV, visible and mid-IR, and provide highest output powers. Important properties of all these systems are low noise (RIN and linewidth) and drift. Properties that profit from excellent laser driving electronics. For further stabilization, a range of laser locking electronics serves for linewidths down to the 1 Hz level and convenient digital control.
Lasertechnik

Lasertechnik

Wir verwenden gepulste NdYAG-Laser zum Bohren, Schweißen und Trennen. Gegenüber konventionellen Schweißverfahren kann vor allem eine geringere und gezieltere Wärmezubringung, ein geringerer Verzug und eine höhere Schweißgeschwindigkeit erzielt werden. Beim Laser-Schweißen werden Schutzgase als Prozessgase (Arbeitsgase) eingesetzt.
Lasertechnik

Lasertechnik

Wir verfügen über 2 der modernsten und mit der aktuellen Technik ausgerüsteten Trumpf Laseranlagen. Tru Laser 3040 - Tru Laser 3030 Die Laserschneidmaschinen TruLaser 3030 und TruLaser 3040 mit CO2-Laser vereinen hohe Leistung mit Schnittqualität, die ihresgleichen sucht. Der Laser, robust und zuverlässig, verschafft Ihnen spiegelglatte Schnittkanten, die meist komplett ohne Nachbearbeitung auskommen. Durch kompakte Maschinenabmessungen und ein einfaches Bedienkonzept sind die TruLaser 3030 und die TruLaser 3040 ein perfektes Gesamtpaket für die Produktion Ihrer Laserschneidteile. - Spiegelglatte Schnittkanten dank BrightLine im Edelstahl. - Kleinste Konturen dank CoolLine Ausstattung, auch im dicken Baustahl. - Sehr hohe kostengünstige Effizienz per Drop&Cut aus Restgittertafel. - Automatisiertes Arbeiten durch selbständige Palettenanlage und Bestückungssysteme. Fly Linie ist eine Bearbeitungsstrategie für schnelle Blechbearbeitung Fliegendes, positionsgenaues Zu- und Abschalten des Laserstrahles Oxydfreies Schneiden Sauerstoff Schneiden Stickstoff-High-Speed Schneiden ConturLinie schneidet Löcher die geringer sind als die Blechdicke Coollinie für feine Konturen im Dickblechbereich Arbeitsbereich Typ 3030 Typ 3040 X-Achse 3000 mm 4000 mm Y-Achse 1500 mm 2000 mm Max. Werkstückgewicht 900 kg 1700 kg Leistungsspektrum 4000-5000W Laserspezifische Daten TruFlow 5000 Max. Blechdicke Baustahl 25 mm Max. Blechdicke Edelstahl 20 mm Max. Blechdicke Aluminium 12,0 m
Lasertechnik

Lasertechnik

3D-Laserschneidanlage Trumpf LaserCell 1005 Lasertyp TLF 3000 Turbo Achsenverfahrwege: x: 3000 mm; y: 1500 mm; z: 750 mm Tischgröße: 2000 x 1500 mm 2D-Laserschneidanlage Trumpf Trumatik L 2530 Lasertyp TLF 1800 Achsenverfahrwege: x: 2530 mm; y: 1400 mm Tischgröße: 2500 x 1250 m
Laserschneiden

Laserschneiden

Serschneiden ist ein berührungsloses thermisches Trennverfahren für Plattenmaterial und Rohre. Je nach Geometrie können auch kundenspezifische Bauteile bearbeitet werden. Alle Schneidaufgaben führen wir in Lohnfertigung aus, auch unter Beistellung Ihres Materials oder Ihrer Bauteile. Eine grobe Übersicht über von uns bearbeitbare Werkstoffe gibt folgende Tabelle. Für die Bearbeitung Ihrer individuellen Bauteile benötigen wir die Abmaße.
LASERTECHNOLOGIE

LASERTECHNOLOGIE

Lasern von Blechen und Profilen Die Möglichkeiten, die uns die Lasertechnologie bietet, sind unbegrenzt. Egal ob aus Edelstahl, (Corten-) Stahl oder Aluminium: mit unseren Präzisionslasern garantieren wir hochwertige Einzelteil- und Serienfertigung. BLECHLASERANLAGE Materialstärken: Edelstahl bis 20mm – Stahl bis 25mm – Aluminium bis 12mm Präzise Einzelteil- und Serienfertigung auch Rohre bis Ø600mm Großes Blechlager für kurzfristige Aufträge ROHRLASERANLAGE Rohre Ø12-220mm – eckige Rohre max. 200 x 200 mm Beladung Länge Stange 6500mm, Rohrgewicht bis 35kg/m Laserschneidanlage für Stahl, Edelstahl, Aluminium und Legierungen.
Laserscanning

Laserscanning

Mit einem portablen Messarmsystem mit 7 Achsen können Punkte taktil und auch berührungslos vermessen und in einer geeigneten Softwareapplikation aufgezeichnet und exportiert werden. Die Messobjekte reichen von kleinen Bauteilen bis hin zu kompletten Fahrzeugen. Anwendung in vielen Industrien: Ausrichtung und Präzisionseinrichtung, Inspektion (Nachweis der Maßhaltigkeit von Teilen), Reverse Engineering (CAD-Zeichnungen aus realen Objekten) etc.
Laserbearbeitung

Laserbearbeitung

Seit 1996 haben wir laserbearbeitete Teile in unserem Sortiment. Wir sind stolz Ihnen diese langjährige Erfahrung anbieten können. Vom CAD System werden die Programme direkt in die Maschine übertragen. So können schnell fehlerfreie Teile hergestellt werden. Auch Ihre Daten können übernommen und in Maschinenprogramme umgesetzt werden. Seit Anfang 2008 wurde unser Maschinenpark durch eine Trumpf TruMatic 600L erweitert Anspruchsvolle fertigungstechnische Aufgaben können nun exakt und schnell bearbeitet werden, weil bei der Bearbeitung eines Einzelteils verschiedene Technologien intelligent miteinander verknüpft werden können: Stanzen von Standard Konturen in einem Hub (z.B.Rund, Viereck, Langloch • Laserschneiden filigraner Innen- und Außenkonturen mit glatter gratfreier Schnittkante • Gewindeformen • Umformungen (z.B. Tiefzüge, Senkungen, Kiemen, Sicken) • Lackierfestes Kennzeichnen durch Signieren oder Prägen TC 600L Somit ist HEKA-Möderndorfer in der Lage auch Blechteile in größeren Stückzahlen und gleichbleibender Qualität für den Kunden zu fertigen. Natürlich bieten wir auch reine Laserteile an. So ist es heute möglich viele Materialien wie Stahl, Nirosta Material und Buntmetalle zu schneiden, sehr hochgenaue Teile bis ca. 2mm Dicke oder mit entsprechender Laserleistung bis 15mm Dicke und mehr. Bitte fragen Sie an, wir unterbreiten Ihnen gerne ein Angebot.