Finden Sie schnell meßmer für Ihr Unternehmen: 10439 Ergebnisse

Testeinrichtung für Torsionsstäbe

Testeinrichtung für Torsionsstäbe

Dauerfestigkeitsprüfung von Drehfederstäben mit einer maximalen Länge von 1500 mm bei einem maximalen Moment von 4000 Nm. Lösung Mechanische Ausführung Grundgestell mit Grundplatte und integrierten T-Nuten-Schienen Antriebseinheit mit Gleichstrom-Motor 15 kW Doppelexzenter mit einer maximalen Verstellung von ± 43,5° Lagersystem mit Pleuel-Ausleger und Drehmoment-Messung Technologischer Prüfaufbau Technologischer Prüfaufbau Drehfederstäbe können mit einer einstellbaren Vorspannung von bis zu 2000 Nm mit einer Wechselbelastung von maximal ± 2000 Nm beaufschlagt werden. Die Prüffrequenz beträgt maximal 10 Hz. Um die Torsionsmomente zu erreichen, kann der Drehstab um maximal ± 43,5° verdreht werden. Die auftretenden Drehmomente werden erfasst und überwacht.
Servolenkungsprüfstand für die Entwicklung

Servolenkungsprüfstand für die Entwicklung

Dieser Servolenkungsprüfstand testet unterschiedliche Zahnstangen-Lenkungen bei kurzen Umrüstzeiten. Er ist somit vor allem für die Lenkungsentwicklung geeignet. Als Zahnstangen-Belastungseinheit dienen vom PC angesteuerte Servozylinder. Der Antriebskopf für die Eingangswelle – mit AC-Servomotor und Drehmoment-Messwelle – ist auf einem XYZ-Schlitten montiert und in 2 Ebenen schwenkbar. Standardtests sind über Menü vorwählbar, Sondertests können am PC zusammengestellt werden.
Prüfanlage für runde Teile, Bolzen-Messeinrichtung (Dimension)

Prüfanlage für runde Teile, Bolzen-Messeinrichtung (Dimension)

Halbautomatische Prüfeinrichtung für Bolzen Durchmesser: 10 – 35 mm, Länge: 15 – 70 mm Dimensionsprüfung Kontur: Außendurchmesser, Balligkeit, Konizität (Messgenauigkeit ± 0,0005 mm) Geräuschentwicklung: Durch Regelung der Durchlaufmenge und Druckerhöhung kann die Geräuschentwicklung getestet werden. Längenmessung (Messgenauigkeit ± 0,01 mm) Mehrfachsortierung nach Dimensionsklassen (2 Bereiche + Ausschuss) Taktzeiten je nach Bolzengröße: 1,5 – 2,5 sec/Teil
Lebensdauer-Prüfstand für Zahnstangen-Lenkungen

Lebensdauer-Prüfstand für Zahnstangen-Lenkungen

Mit diesem Prüfstand können Lebensdauerprüfungen an manuellen und servounterstützten Zahnstangenlenkungen durchgeführt werden. Statische und dynamische Tests bis 30 Hz Spurstangenbelastung laufen rechnergesteuert ab. Die Antriebseinheit ist in 4 Achsen und die Belastungseinheit in 2 Achsen verstellbar. Über TCP/IP-Schnittstelle kann von beliebigen Rechnern aus der Status der laufenden Prüfungen abgefragt werden.
Lenkgetriebe-Prüfstand mit Doppelantriebswelle

Lenkgetriebe-Prüfstand mit Doppelantriebswelle

Dieser Prüfstand führt manuelle und rechnergesteuerte Funktionsprüfungen an mechanischen und hydraulischen Lenkgetrieben durch. Es können sowohl Zahnstangen- als auch Kugelumlauf-Lenkungen getestet werden. Komfortable Aufspannvorrichtungen und Andockeinheiten bieten hohe Flexibilität für den Modellwechsel. Um die geforderte Genauigkeit bzw. die geforderten Maximalkräfte für das Reibmoment sowie das Bruchmoment der Lenkung zu erreichen, ist der Prüfstand mit zwei Messsträngen ausgerüstet. Im kleinen Messstrang werden Momente von etwa 0,5 Nm bis 50 Nm gemessen. Der große Messstrang misst Momente bis 750 Nm. Zur Prüfung hydraulischer Lenkungen kann der Prüfstand mit einem regelbaren Ölversorgungsaggregat sowie mit Aufnahme und Antrieb der Original-Ölpumpe ausgestattet werden. Folgende Funktionsprüfungen können durchgeführt werden: Lenkwinkel Lenkweg Druck (Hydraulik regulierbar) Leckölverlust Hydropulsfrequenz Spielmessung Lenkmoment-Kennlinie Reibmoment-Kennlinie Druck-Lenkradmoment-Kennlinie Zahnstangenverschiebekraft-Kennlinie Druckspiel Buchsenspiel dynamisches Ritzeldrehmoment Manuelle und rechnergesteuerte Festigkeitsprüfung: Eingangsdrehmomentprüfung gemäß Vorschrift Eingangsdrehmomentprüfung bis zum Versagen
Endmontage und Prüfung von servoelektrischen Lenkantrieben

Endmontage und Prüfung von servoelektrischen Lenkantrieben

Montagelinie zum Fügen und Verschrauben von Motor und ECU, Schweißen von Kontakten, Oberflächenvorbehandlung, Kleben der Schutzabdeckung, Flashen der ECU und Dichtheitsprüfung sowie Funktionsprüfung. Konkrete Detailvorgaben: Hohe technische Verfügbarkeit, Sauberkeits- und ESD-Anforderungen.
Servolenkungs- und -pumpenprüfstand

Servolenkungs- und -pumpenprüfstand

Die elektrische Steuerung ist als SPS-Steuerung ausgeführt. Der Prüfablauf lässt Hand-, Halbautomatik- und Automatikbetrieb zu. Mechanische Ausführung Grundgestell mit Grundplatte und integrierten T-Nuten-Schienen Antriebseinheit mit Servomotor, Drehwinkel-, Drehmomenterfassung Belastungseinheit über Servozylinder mit Kraft-/Wegmessung Separater Ölpumpen-Teststand Aufspannvorrichtungen Hydraulische Ausführung Aggregat für Servolenkungsversorgung Aggregat für Servozylinder Servozylinder als Belastungseinheit Druckspeicher im Belastungskreislauf Alternative Speisung des Lenkgetriebes über Fahrzeugpumpe Elektrische Steuerung und Regelung Die elektrische Steuerung ist als SPS-Steuerung ausgeführt. Der Prüfablauf lässt Hand-, Halbautomatik- und Automatikbetrieb zu. Im Automatikbetrieb werden vom Rechner über optoentkoppelte Ein-/Ausgänge die Prüfabläufe gesteuert. Ferner werden die Sollwerte für Antriebsdrehzahl, Lenkweg und Belastungskraft vom Rechner vorgegeben und geregelt. Bei der Belastungseinrichtung wird je nach Prüfvorgang Kraft- oder Wegregelung angewählt. Die elektrischen Steuerungs- und Regelungseinrichtungen sind in drei 19”-Schaltschränken untergebracht. Die Bedien- und Anzeigeelemente sind in 19”-Frontplatten der Schaltschränke unter ergonomischen Gesichtspunkten angeordnet. Elektrische Messtechnik Zur Ermittlung der erforderlichen Messdaten sind folgende Messwertaufnehmer eingebaut: 1 Differenzdruckaufnehmer (Hydraulikdruck an der Lenkung) 1 Drehmomentaufnehmer (Antriebsmoment) 1 Kraft-Aufnehmer (Belastungskraft auf der Antriebsseite der Lenkungen) 1 Lenkungsdrehwinkel-Aufnehmer 1 inkrementaler Lenkweg-Aufnehmer 2 induktive Wegaufnehmer für Druckstück- und Buchsenspielmessung 1 Durchflussmengenzähler 2 Temperaturfühler (Hydraulikaggregat und Lenkungsvorlauf) Die Messwertverstärker und Anpasseinheiten mit den zugeordneten Digitalanzeigen sind in 19”-Einschübe bzw. 19”-Frontplatten eingebaut. Zu jedem Messverstärkersignal ist ein per Rechner ansteuerbarer Tiefpassfilter eingebaut, um Störanteile des Messsignals auszufiltern. Die gefilterten Messsignale werden auf A/D-Eingangskanäle des Rechnersystems geführt. Die gewünschten Messwerte können auch über den eingebauten X/Y-Schreiber aufgezeichnet werden. Datenerfassungs- und Datenverarbeitungssystem Das Datenerfassungs- und Datenverarbeitungssystem ist als 19”-Industrierechner aufgebaut. Mit dem Rechner-System wird der Prüfablauf vorgegeben sowie die Messsignalerfassung während des Tests und die Auswertung der Ergebnisse nach dem Test vorgenommen. Insgesamt werden 10 Messsignale im 100 Hz-Takt erfasst und gespeichert, ferner die Sollwerte für Antriebsdrehzahl und Belastungskraft bzw. Lenkweg im Rechner vorgegeben. Die Eingabe der Testparameter wird vom Bediener mit Hilfe einer Bildschirmführung am Terminal vorgenommen. Alle Vorgänge am System werden auf Wunsch protokolliert. Um die Verdrahtung bzw. die Definition der Kalibrierfunktion überprüfen zu können, steht dem Benutzer ein Testprogramm zur Verfügung. Die Filter-Charakteristik der TP-Filter kann über eine V24-Schnittstelle (RS 232 C) vom Rechner aus verändert werden. Technologischer Prüfablauf Bei Testdurchführung mit Hydraulikaggregat muss vor Prüfungsbeginn die Hydraulikaggregat-Heizung eingeschaltet werden, um das ATF-Öl auf die erforderliche Temperatur aufzuheizen. Im Pumpenbetrieb wird der Hydraulik-Kreislauf durch Bypass-Schaltung der Fahrzeugpumpe auf Solltemperatur gefahren. Nachdem der Prüfling auf die entsprechende Aufspannvorrichtung montiert und die Verbindungselemente angekoppelt wurden, muss vor Prüfungsbeginn Hand-, Halbautomatik- oder Automatikbetrieb gewählt werden. Bei Automatikbetrieb werden die erforderlichen Prüfabläufe vom Rechner durchgeführt. Die ermittelten Versuchsdaten werden vom Rechner nach Beendigung des Prüfvorgangs als tabellarisches/graphisches Protokoll auf einen Drucker ausgegeben.
Servolenkungsprüfstand für 100 %-Prüfung in Montagelinie

Servolenkungsprüfstand für 100 %-Prüfung in Montagelinie

Der Prüfstand führt vollautomatische Funktionsprüfungen an hydraulischen Lenkgetrieben in Zahnstangenausführung durch. Durch die automatische Erkennung der Lenkungstypen stellt sich der Prüfstand weitestgehend selbständig auf verschiedene Lenkungsmodelle ein. So sind nur wenige oder im Idealfall keine manuellen Eingriffe beim Modellwechsel erforderlich. Aufgrund des integrierten Werkzeugmagazins werden die Nebenzeiten und der Arbeitsaufwand des Bedieners beim Werkzeugwechsel bzw. beim Umrüstvorgang auf ein Minimum reduziert. Dies erhöht die Produktivität und Effizienz erheblich. Wegen der kurzen Umrüstzeiten können auch kleine Losgrößen wirtschaftlich produziert werden.
Laser-Messplatz

Laser-Messplatz

Gemessen werden Durchmesser und Kanten, als Option sind auch Schrägen, Rundungen und Rundheitsmessungen möglich. Beschreibung des Laser-Messgerätes Als Basis dient ein Laser-Scanner, dessen Kernstück eine Helium-Neon-Röhre ist, die einen scharf gebündelten, parallel gerichteten Laserstrahl aussendet. Hiermit ist es möglich, schnelle Messungen mit hoher Genauigkeit am Werkstück vorzunehmen, ohne dass irgendetwas eingestellt werden muss. Gemessen werden Durchmesser und Kanten, als Option sind auch Schrägen, Rundungen und Rundheitsmessungen möglich. Spezifikation der Standardausführung Messbereiche: - Durchmesser: 4 mm bis 120 mm - Länge: 5 mm bis 700 mm Messzeit: - Durchmesser: < 1 sec. - Längen: < 10 sec. Messgenauigkeit: - Durchmesser: 0,005 mm - Längen: 0,05 mm Auf einem soliden Grundgestell mit Schubladen für diverse Messeinrichtungen und Werkzeuge befindet sich ein Schiebeschlitten, auf dem die Prüflingsaufnahmen sitzen. Dieser Schiebeschlitten wird mittels regelbarem Motor an einem Laserstrahl vorbeigefahren. Der Verfahrweg wird über einen Glasmaßstab mit einer Genauigkeit von 5 Micrometern gemessen und die genaue Position digital angezeigt. Zur Aufnahme der Prüflinge dienen auf gehärteten und geschliffenen Wellen verstellbare Kragarme. In diesen Kragarmen befinden sich zwei Körnerspitzen zur Aufnahme der zu prüfenden Wellen zwischen den Zentren. Um auch Wellen ohne Zentrum messen zu können, sind zusätzlich zu den Körnerspitzen Rollenböcke angebracht, auf die die Wellen gelegt werden. Die Körnerspitzen und Rollenböcke sind über ein Zahnriemensystem miteinander verbunden und werden über einen regelbaren Motor zur Rundlaufmessung angetrieben.
Getriebeprüfstand

Getriebeprüfstand

Der Prüfstand dient zur Ermittlung sowie zur Überprüfung der Regelcharakteristik von Automatikgetrieben mit hydraulischer und elektronischer Regelung. Geprüft werden sowohl stufenlose Automatikgetriebe als auch Automatik-Stufengetriebe für Front- und Heckantrieb sowie Sondergetriebe. Statische und dynamische Prüfabläufe In den statischen Betriebsarten kann der Prüfstand sowohl am Antrieb wie auch am Abtrieb drehmoment- und drehzahlgeregelt betrieben werden. In der Betriebsart “Fahrsimulation” werden vom Prozessrechner die Motordrehmomente an das Antriebssystem vorgegeben. Die Parameter für das Abtriebssystem (Rollwiderstand, Luftwiderstand, Beschleunigungswiderstand, Steigungswiderstand, statischer Zusatzwiderstand) werden vom Fahrsimulationsrechner errechnet. Vom Prüfstand werden Straßendaten und Umgebungsdaten in Form von Drehzahl- und Drehmomentwerten an den Prüfling weitergegeben. Auf dem Prüfstand können so reproduzierbare Versuche mit Berg- und Talfahrt, Kick-Down-Beschleunigung, Schaltspiele bei unterschiedlichen Getriebetemperaturen usw. simuliert werden, ohne dass der Prüfling für den sonst notwendigen Straßentest in einen PKW eingebaut werden muss. Zusätzlich verfügt der Prüfstand über eine Anfahr- und Stillsetzroutine, um den Prüfling vor Beschädigungen zu schützen.
Vollautomatische Schraub-, Mess- und Einstellstationen in der Lenkungsmontage

Vollautomatische Schraub-, Mess- und Einstellstationen in der Lenkungsmontage

Die Anlage ist Teil einer Montagelinie für Nutzfahrzeuglenkungen und dient dem typabhängigen Verschrauben von Gehäusedeckeln, Messen des Axialspiels und Voreinstellen des Reibmomentes. Durch automatische Erkennung der Lenkungstypen sind Modellwechsel ohne manuelle Eingriffe möglich. Die Werkstückzuführung erfolgt über ein Transportband, das durch die Stationen geführt ist.
Strahlungsmessgerät für Fässer mit radioaktivem Abfall

Strahlungsmessgerät für Fässer mit radioaktivem Abfall

Unser hochmodernes Strahlungsmessgerät ist speziell für die Prüfung von Fässern mit radioaktivem Abfall konzipiert und bietet eine allseitige Überprüfung, um die Dosisstrahlung jedes Fasses genau zu ermitteln. Das Strahlungsmessgerät umfasst einen Messschlitten und einen PC, womit es als umfassendes System zur Strahlungsmessung dient. Aufgabe Das Strahlungsmessgerät hat die Aufgabe, 200-Liter-Fässer, die mit kontaminiertem Material gefüllt sind und bis zu 1000 kg wiegen können, auf Strahlung zu untersuchen. Für eine gründliche Messung muss jedes Fass eine vollständige Umdrehung durchlaufen. Das Strahlungsmessgerät ist so konzipiert, dass es zwei unterschiedliche Fassdurchmesser aufnehmen kann und durch seine kompakten Maße durch eine 900 mm breite Tür transportierbar ist. Lösung Das Strahlungsmessgerät wird auf einer robusten 42 mm dicken Stahlplatte montiert und verfügt in seinem Transportzustand über die Maße 850 mm x 1300 mm x 1600 mm. Die Drehvorrichtung des Strahlungsmessgeräts verfügt über einen Aufnahmering mit einer 5-fach-Lagerung und wird durch eine Zahnriemenumschlingung angetrieben. Die Umdrehungszeit lässt sich zwischen 200 und 2000 Sekunden stufenlos einstellen. Das Beladen des Strahlungsmessgeräts kann mühelos mit einem Kran oder Hubstapler erfolgen. Zur präzisen Dosismessung sind am Strahlungsmessgerät 12 Gamma-Sensoren in verschiedenen Anordnungen befestigt, die während der Umdrehung alle 5° die Dosisleistung messen und aufzeichnen.
Synchronisationsprüfstand

Synchronisationsprüfstand

Aufgabe: Es sind Getriebekomponenten und Komplettgetriebe zu untersuchen. Die Untersuchung muss unter verschiedenen Umgebungstemperaturen erfolgen. In diesen Zuständen muss das Drehmoment, die Schaltkraft sowie die Drehzahl von An- und Abtrieb ermittelt werden können. Die Relativbewegung der Synchronringe während eines Schaltvorganges eines Gangradpaares (1. und 2. Gang) muss getestet werden können. Die Bremsmomente müssen über eine Belastungseinheit vorgegeben werden können. Die Drehzahlen von An- und Abtrieb sowie Differenzdrehzahl, Schaltkraft, Schaltgabelreibmoment, Synchronisationsmoment, Synchronringbewegung und Schaltstangenbewegung müssen während des Schaltvorganges gemessen und durch einen Rechner ausgewertet werden können. Um den Test realistischen Bedingungen zu unterziehen, wird hinter dem Elektromotor eine Schwungmasse nachgeschaltet, die die Schubkraft des Kraftfahrzeugs simulieren muss. Lösung: Zur Lösung dieser Aufgabe wurde ein schwenkbarer Aufnahmetisch aufgebaut. Auf diesem sitzt in einem Nutenfeld ein Aufspannwinkel, an welchem die verschiedenen Getriebetypen festgeschraubt werden können. Im Wesentlichen besteht der Prüfstand aus: Prüfstandsgestell, kippbar, mit Aufspannplatte für Prüfbox oder Komplettgetriebe Antriebsstrang mit Drehmomenten-Messstelle und Schwungmasse Ölversorgungseinheit Gangschalteinheit mit separater Hydraulikversorgung Umlufttemperierungsaggregat isoliertem Prüfraum Prüfbox Belastungseinheit für Prüfbox Kalibriermittel für die Drehmomenten-Messwelle im Antriebsstrang Antriebsmotor Schaltschrank für Leistungsteil 19″-Schrank für Mess- und Regeleinschübe Bedienpult Rechner zur Messwert-Erfassung Bedienpult: Das Bedienpult ist als Bedientableau im 19″-Schrank ausgeführt. Rechner zur Messwert-Erfassung: Die Messdaten-Erfassung und -Auswertung wird über einen Rechner durchgeführt. Die Ausgabe der Messprotokolle erfolgt über einen Drucker. Die digitalen Werte werden von einer Interface-Karte übernommen und in den Rechner gegeben. Beschreibung der Einzelkomponenten: Prüfstandsgestell mit Aufspannplatte für Prüfbox oder Komplettgetriebe. Das Prüfstandsgestell ist auf einem massiven Rohrrahmen aufgebaut und nach einer Seite bis maximal 5 Grad kippbar. Die Aufspannplatte für die Prüfbox ist mit T-Nuten versehen und am äußeren Umfang mit entsprechenden Dichtlippen für die Kühlbox ausgerüstet. Die Aufspannplatte entspricht den DIN-Vorschriften und weist die entsprechende Genauigkeit auf. Der gesamte Prüfstandsrahmen ist auf der Oberseite flächig bearbeitet nach Gütestufe 3 DIN 876. Der Hauptantriebsmotor sitzt im Untergestell des Prüfstandes und läuft mit 3.000 U/min. Dies ergibt eine maximale Antriebswellendrehzahl von ca. 5.000 U/min. Antriebsstrang mit Drehmomenten-Messstelle und Schwungmasse: Der Antriebsstrang sitzt auf einer Justierplatte in der Mitte des Prüffeldes und kann dort genau einjustiert werden. Die Justierung ist nach allen drei Achsen möglich. Die Schwungmasse sitzt zwischen zwei Lagerstellen und ist für die hohen Drehzahlen ausgewuchtet und stabilisiert. Die Antriebswelle ist dynamisch gewuchtet (Gütestufe G 2,5 nach VDI 2060). Ölversorgungseinheit: Die Ölversorgungseinheit dient dazu, dem Getriebe entsprechend erwärmtes oder gekühltes Öl zuzuführen. Mit dem Hydraulikaggregat können Betriebstemperaturen zwischen 20 °C und 150 °C gefahren werden. Der Systemdruck beträgt max. 10 bar. Mit dem Heizaggregat können verschiedene Viskositäten von Öl gefahren werden. Das gesamte Ölaggregat wird den extremen Temperaturbedingungen und den Schwankungen der Ölsorten gerecht. Die Aufheizzeit beträgt ca. 60 min., um eine Temperatur von 150 °C zu erreichen. Zur Sicherheitsregelung ist ein Sicherheits-Temperaturbegrenzer mit Entriegelungstaste gemäß VDE für 0 °C bis 250 °C installiert. Das gesamte Ölaggregat ist fahrbar ausgelegt. Ölkreislauf- und Hydraulik-Komponenten entsprechen den höchsten Anforderungen der Hydrauliktechnik. Die Bewegungsabläufe werden hydraulisch gesteuert und über zwei Kraft- und Wegmesseinrichtungen überwacht. Die zur Gangschalteinheit gehörenden Messverstärker und Steuerungseinschübe sind im 19″-Schrank untergebracht. Die Gangschalteinheit besitzt serielle Schnittstellen RS 232 zur speicherprogrammierbaren Steuerung, zum Messwert-Erfassungsrechner und eine Schnittstelle zur Programmierung des Systems über ein Handterminal.
Bolzen-Messeinrichtung, Rundteile-Messanlage (Ultraschall und Wirbelstrom)

Bolzen-Messeinrichtung, Rundteile-Messanlage (Ultraschall und Wirbelstrom)

Vollautomatische Prüfeinrichtung für Bolzen Rundteile Durchmesser: 10 – 35 mm, Länge: 15 – 70 mm Prüfkriterien: Oberflächenrissprüfung mit Ultraschall und Wirbelstrom Dimensionsprüfung Kontur: Außendurchmesser, Balligkeit, Konizität im Microbereich, Längenmessung im 1/100stel-Bereich Mehrfachsortierung nach Größen (4 Bereiche + Ausschuss), Sortierung nach Gut- und Schlechtteilen Taktzeiten je nach Bolzengröße: 1,5 – 2,5 sec/Teil
Prüfanlage für runde Teile, Bolzen-Messeinrichtung (Dimension und Oberfläche)

Prüfanlage für runde Teile, Bolzen-Messeinrichtung (Dimension und Oberfläche)

Durchmesser: 45 – 75 mm, Länge: 40 – 130 mm Prüfkriterien: Oberflächensichtung mittels CCD-Kamera Oberflächenrissprüfung mit Ultraschall- und Wirbelstromtechnik Dimensionsprüfung Kontur: - Außendurchmesser, Balligkeit, Konizität (Messgenauigkeit ± 0,0005 mm) - Längenmessung (Messgenauigkeit ± 0,01 mm) Mehrfachsortierung nach Dimensionsklassen (2 Bereiche) Taktzeiten je nach Bolzengröße: 2,5 – 5 sec/Teil
Reibleistungsprüfstand

Reibleistungsprüfstand

Die Prüfstände dienen zur Untersuchung der Einflüsse unterschiedlicher Konstruktionsmerkmale von Motorbauteilen auf die Reibleistung des Motors. Es wurden zwei verschiedene Reibleistungsprüfstände aufgebaut, die zentral über ein Steuerpult gesteuert werden können. Die wesentlichen Unterschiede bestehen in der Antriebsleistung und im Aufbau der mechanischen Konstruktion. Während der eine Reibleistungsprüfstand eine in der Höhe stufenlos über 400 mm einstellbare Montageplatte besitzt, ist beim anderen die Aufspannplatte fest installiert. Die Genauigkeit der Aufspannplatte entspricht der DIN 876, Güte 3. Die Abmessungen sind 800 mm x 600 mm. Die Steuerung berücksichtigt folgende Betriebs- und Störmeldungen: Störmeldungen: Ölstand Temperaturbegrenzer Druckschalter Umwälzpumpe Ölpumpe Ölfilter Druckschalter Zulauf Druckschalter Kühlwasser Gesamtstörmeldung an den Prüfständen Alle Störmeldungen führen während des normalen Betriebs zur Abschaltung der Anlage. Mit Digitaltechnik und Anzeige wird folgendes gemessen: Betriebsstundenzähler Temperatur (Umwälzpumpe oder Prüflingsvorlauf) Vorlaufdruck Temperatur Prüfling Drehzahl Drehmoment Schnittstelle Prüfstand/Rechner: Hand/Automatik Prüflingsstart Antriebsdrehzahl Störung Messwerte Drehzahl Drehmoment Prüflingstemperatur Öldruck Engine Friction Rig: Drehmoment: 50 Nm bei 3500 U/min. Drehzahl: 100 bis 7000 U/min. Valve Train Rig: Drehmoment: 130 Nm bei 3500 U/min. Drehzahl: 100 bis 7000 U/min. Die Drehmoment-Messeinrichtung besitzt die Genauigkeitsklasse 0,2. Die Komponenten des Rechners werden nach Kundenforderung zusammengestellt. Aufbau der Klimaeinrichtung Das Umlufttemperierungsaggregat besteht aus einem in Kompaktbauweise hergestellten Schrank. Im Unterteil befindet sich das Kälteaggregat, im oberen Teil ist das Luftaufbereitungsteil eingebaut. Der Anschluss an die Prüfkammer erfolgt über flexible, isolierte Schläuche. Die Prüfkammer besteht aus am Prüfstand feststehenden und nachträglich montierbaren Wandelementen, die 120 mm stark isoliert sind. Das Temperierungsaggregat ist für eine Aufheizgeschwindigkeit von 2 °C/min. und eine Abkühlgeschwindigkeit von 1 °C/min. bei 60 kg Prüflingsmasse ausgelegt. Bedienungsteil Das separate Bedienungsrack (19″) ist mit einem steckbaren Kabel (20 m) mit der Truhe verbunden. Es enthält den Temperaturregler mit digitalem Sollwertgeber und digitaler Istwertanzeige sowie EIN/AUS-Schalter, Funktionskontrolllampen und Störungsanzeigen. Technische Daten Typ: UTA 1500/30-120 DU Abmessungen Aggregat: - Höhe ca. 1850 mm - Breite ca. 1500 mm - Tiefe ca. 1000 mm Prüfrauminhalt: ca. 950 l Außenabmessungen: - Höhe ca. 1400 mm - Breite ca. 1100 mm - Tiefe ca. 1200 mm Temperaturbereich: -30 °C bis +120 °C Temperaturkonstanz: +/- 2,0 °C Kälteaggregat wassergekühlt: 6 kW Kältemittel (Frigen): R 502 Netzanschluss: 220/380 V / 50 Hz Anschlussleistung: ca. 25 kVA
Axialgelenk-Prüfstand

Axialgelenk-Prüfstand

Prüfstand zur Durchführung von Einzel- und Dauertests an Axialgelenken Der Axialgelenk-Prüfstand unterzieht verschiedenartige Axialgelenke harten Einzel- und Dauer-Belastungstests. Lastkollektive, Winkelbewegungen, Temperatur und Luftfeuchtigkeit sind frei vorwählbar. Ausfallkriterium ist das auftretende Axialspiel oder der Bruch des Axialgelenkes. Technische Kurzbeschreibung: - Der Prüfstand ermöglicht die gleichzeitige Prüfung von maximal 4 Axialgelenken. - Mit Hydraulikzylindern in Servobauart werden die Axialkraft pro Gelenk und die Winkelbewegung gemeinsam für alle Gelenke aufgebracht. Die Regelung von Axialkraft und Winkelbewegung erfolgt wahlweise linear oder sinusförmig. - Jede Prüfstelle ist separat gelagert und verfügt über individuelle Prüfadapter. Dies ermöglicht die gleichzeitige Prüfung unterschiedlicher Axialgelenke. - Die Ermittlung des Axialspiels erfolgt durch Messung der Bewegung zwischen Gehäuse und Gelenkstab bei vorgegebener Kraft auf das Axialgelenk. Bei Defekt eines Gelenks schaltet sich der jeweilige Zylinder ab. Ausfallzeit, Zyklenzahl und Axialspielverlauf werden protokolliert.
Funktionsprüfstand für Fußhebelwerk und Bremskraftverstärker

Funktionsprüfstand für Fußhebelwerk und Bremskraftverstärker

Prüfen von Fußhebelwerken und deren Einzelpedale, Bremskraftverstärkern, Radbremsen und Kupplungsbetätigungssystemen in Kombination mit den unterschiedlichen Verbrauchern, wie Volumenaufnehmer-Bremssystem, Radbremsen, Prüfvorrichtung Kupplungsnehmerzylinder und Getriebegehäuse mit Kupplung und Kupplungsnehmerzylinder. Konkrete Detailvorgaben: Prüfungen unter extremen Temperaturbedingungen (in der temperierten Kammer möglich)
POWERFLEX 2200 C/F/S/D Nuclear

POWERFLEX 2200 C/F/S/D Nuclear

Radar-Niveautransmitter / Nuklear / mit TDR-Radar geführter Mikrowelle Füllstandmessgerät mit geführtem Radar (TDR) für die Nuklearindustrie * Kontinuierliche Messung von Füllstand, Abstand, Volumen, Masse oder Dielektrizitätszahl * Ausgelegt und getestet für kerntechnische Umgebungen * Messbereich: 0,6…40 m * -50…+150°C; -1…100 barg Der POWERFLEX 2200 ist ein 2-Leiter-Füllstandmessgerät (4…20 mA) mit geführtem Radar basierend auf TDR-Technologie (Time Domain Reflectometry). Das Gerät ist für den Einsatz in sicherheitskritischen und nicht-sicherheitskritischen Flüssigkeitsanwendungen in der Nuklearindustrie ausgelegt. Es wurde nach IEEE 323, IEEE 344 und RCC-E qualifiziert und entspricht kerntechnischen Normenche, wie z. B. ASME Section III oder RCC-M. Bei hoher Strahlungsstärke kann der Messumformer bis zu 400 m / 1312 ft von der Sonde entfernt installiert werden (POWERFLEX 2200 D). Mit seiner hohen Beständigkeit gegen Strahlung, seiner seismischen und thermischen Qualifizierung sowie der umfangreichen Auswahl an Optionen und Varianten ist der POWERFLEX 2200 für zahlreiche Nuklearanwendungen geeignet, wie z. B. Füllstandmessung von Flüssigkeiten in Abklingbecken für abgebrannte Brennelemente oder in Drucktanks. Produkthighlights * Für Anwendungen im Nuklearbereich geeignet * Vier Ausführungen für sicherheitskritische und nicht-sicherheitskritische Anwendungen * Entspricht Normen der Nuklearindustrie (z. B. ASME Section III, RCC-M) * Der getrennte Messumformer kann bis zu 400 m / 1312 ft von der Sonde entfernt installiert werden. * Qualifiziert gemäß IEEE Std 323, IEEE Std 344 und RCC-E * Hohe Beständigkeit gegen Strahlung (Sonde und Kabel) * Seismische Qualifizierung bis 300 m/s2 Weitere Eigenschaften:: mit TDR-Radar geführter Mikrowelle Messbereich:: 0.6…40 m / 2…131 ft Prozesstemperatur:: -50…+150°C / -58…+302°F Druck:: -1...100 barg / -14.5...1450 psig
Differenzdruck-Durchflussmesser - OPTIBAR DP 7060

Differenzdruck-Durchflussmesser - OPTIBAR DP 7060

Differenzdruck-Durchflussmessgerät zur Volumenmessung von Flüssigkeiten, Gasen und Dampf * Für einfache bis sehr anspruchsvolle aggressive, abrasive oder viskose Medien * Bis +400°C; max. 160 bar (statischer Druck) * Flansch: DN50…600 / 2…24¨ * 2-Leiter 4…20 mA/HART®, FF, Profibus-PA * Durch Kombination einer Messblende mit dem Differenzdruckmessumformer OPTIBAR DP 7060 entsteht ein vielseitiges Differenzdruck-Durchflussmessgerät für viele unterschiedliche Anwendungen mit Flüssigkeiten, Gasen oder Dampf. Dieses Durchflussmessgerät ist aufgrund der breiten Auswahl von Werkstoffen und Ausführungen für verschiedenste Prozessbedingungen und -parameter geeignet ‒ von hohen Betriebsdrücken und -temperaturen bis hin zu extrem aggressiven Medien. Es ist außerdem ein kostengünstiges und dennoch zuverlässiges Gerät für Erdgas- oder Nassgasmessungen. Das Differenzdruck-Durchflussmessgerät deckt einen breiten Messbereich ab und ist für höhere Genauigkeitsanforderungen auch nasskalibriert lieferbar. Es bietet verschiedene digitale Kommunikationsoptionen. Produkthighlights * Weltweit standardisiertes Durchflussmessprinzip nach ISO 5167 * Ein Differenzdruckmessumformer für alle Durchflussanwendungen in kompakter oder getrennter Ausführung * Austausch des Druckmessumformers ohne Prozessunterbrechung * Integrierte Absolutdruckmessung * Alle Messunsicherheiten unter Betriebsbedingungen sind bekannt und können berechnet werden * Optionale Temperatur- und Druckmessung * Optimierung von Messstellen entsprechend bestehender Anforderung, z. B. kurze Einlauf-/Auslaufstrecken, geringer Druckverlust, geringe Messunsicherheit. * Keine beweglichen Teile OPTIBAR DP 7060 Technologie: Differenzdruck,2-Leiter Flüssigkeit: für Flüssigkeiten,für Gas Weitere Eigenschaften: kompakter,4-20 mA,kostengünstiger,Hochtemperatur,Flansch Anwendung: für Hochdruck
Keilriemen-Prüfstand

Keilriemen-Prüfstand

Die Auslegung des Prüfstandes erfolgt nach dem Energie-Kreislauf-System mit mechanischer Energierückführung. Bei dieser Anordnung entsteht über den Prüfling (Keilriemen), zwei parallele Wellenzüge und einen Zahnriementrieb ein Energiekreislauf, wobei als Antriebsleistung nur die Summe an Reibverlusten aufzuwenden ist. Die Drehzahl an der Messspindel beträgt 6000 U/min. Auf der Keilriemenseite lässt sich das Übersetzungsverhältnis – und somit der vorgegebene Schlupf – an der kleinen Keilriemenscheibe der Parallelwelle einstellen, z. B. i = 2,05 : 1. Bei nicht montiertem Zahnriemen (i = 2,05 : 1) wird das Übersetzungsverhältnis mittels der erfassten Drehzahlen von Antriebs- und Abtriebswelle (Parallelwelle) durch ein Rechnermodul errechnet. Das durch den Unterschied der Übersetzungsverhältnisse auftretende Drehmoment wird mit einer Drehmoment-Messwelle gemessen und digital angezeigt. Aus Drehmoment und Drehzahl wird ferner die Leistung errechnet und digital angezeigt. Mit einem Zweikanal-Schreiber können die Messwerte für Leistung und Spannkraft aufgezeichnet werden. Die Keilriemenspannung wird bei Außenlänge größer als 700 mm (Dreischeiben-Prüfung) durch Belastungsgewichte realisiert. Bei Keilriemenlänge kleiner 700 mm wird zweischeibig geprüft und die Spannung durch Vorspannen der Parallelwelle erzeugt. Durch einen einstellbaren Anschlag kann ein Nichtnachspannen des Prüflings simuliert werden. Durch eine zeitliche Ablaufsteuerung können sechs einstellbare Zeiten gefahren werden. Die Einzelheiten und die Gesamtprüfzeit werden auf zwei Betriebsstundenzählern registriert. Keil- und Zahnriemenbruch werden durch entsprechende Abschalteinrichtungen erfasst.
Messwert-Erfassungsrechner für Zahnräder und Kurbelwellen

Messwert-Erfassungsrechner für Zahnräder und Kurbelwellen

Nach erfolgter Messung wird das Messdiagramm auf dem Bildschirm zur optischen Überprüfung dargestellt. Es wurde ein Rechner mit Analog-Digital-Karte zur Messwert-Erfassung eingesetzt. Sämtliche Messungen laufen halbautomatisch ab. Das Startsignal zum Messen erfolgt von der Messmaschine aus. Nach erfolgter Messung wird das Messdiagramm auf dem Bildschirm zur optischen Überprüfung dargestellt. Unter dem Messdiagramm werden die im Prüfplan angegebenen Sollwerte, die errechneten Istwerte und die Deltawerte der Istwerte zu den Sollwerten geschrieben. Auf dem Bildschirm erfolgt die gleiche Darstellung für die Flankenform und Flankenrichtung wie beim Ausdruck.
Lebensdauer-Prüfstand für Zahnstangen-Lenkungen mit integriertem Web-Server

Lebensdauer-Prüfstand für Zahnstangen-Lenkungen mit integriertem Web-Server

Mit diesem Prüfstand können Lebensdauerprüfungen an manuellen und servounterstützten Zahnstangenlenkungen durchgeführt werden. Statische und dynamische Tests bis 30 Hz Spurstangenbelastung laufen rechnergesteuert ab. Die Antriebseinheit ist in 4 Achsen und die Belastungseinheit in 2 Achsen verstellbar. Über TCP/IP-Schnittstelle kann von beliebigen Rechnern aus der Status der laufenden Prüfungen abgefragt werden.
Oberflächenspannungsprüfgerät

Oberflächenspannungsprüfgerät

Oberflächenspannungsprüfgerät
OPTIWAVE 5400 C

OPTIWAVE 5400 C

Füllstandmessgerät / FMCW-Radar / Für Flüssigkeiten FMCW Radar-Füllstandmessgerät für Flüssigkeiten in einfachen Prozessanwendungen * Kontinuierliche, berührungslose Füllstandmessung in geschlossenen Tanks oder im Freien * 24 GHz-Radar, Horn- oder Tropfenantennen * Messbereich: 0…100 m / 328 ft * -50…+130°C / -58…+266°F; -1…16 barg / -14,5…232 psig Der OPTIWAVE 5400 ist ein 2-Leiter 24 GHz FMCW Radar-Füllstandmessgerät für Flüssigkeiten in einfachen Prozessanwendungen. Er eignet sich insbesondere für die kontinuierliche, berührungslose Füllstandmessung in den Branchen Chemie, Petrochemie sowie Öl und Gas. Das Gerät kann mit einer PP-Tropfenantenne für den Einsatz in kondensierender Atmosphäre und bei korrosiven Messstoffen ausgestattet werden, verfügt jedoch auch über metallische Hornantennen. Dank seines hohen Dynamikbereichs misst das 24-GHz-Radargerät Abstände bis 100 m / 328 ft. Der OPTIWAVE 5400 liefert genaue Messwerte auch bei Prozessen mit schnell wechselnden Füllständen, in geschlossenen Tanks oder im Freien (z. B. Dämme, Flüsse etc.). Dieses Füllstandmessgerät kann zur Aufrüstung von Radarmessgeräten bei einfachen Anwendungen verwendet werden, die eine höhere Genauigkeit erfordern. Es besitzt Flansch- oder Gewindeanschlüsse sowie optionale Antennenverlängerungen für alle Stutzenlängen. Das Radargerät ist für explosionsgefährdete Bereiche zugelassen und verfügt über umfassende Gerätediagnosen (gemäß NE 107) sowie HART®7-Kommunikation. Produkthighlights * 2-Leiter, stromschleifengespeist, mit HART®7 * PP-Tropfenantenne: • Unempfindlich gegenüber Kondensation • Kleiner Abstrahlwinkel (5° mit DN150 /6¨ Tropfenantenne) • Ellipsoidale Form und glatte Oberfläche minimieren Ablagerungen Flüssigkeit:: Flüssigkeit Technologie:: FMCW-Radar Anzeige:: digital Messbereich:: 0…100 m / 328 ft Temperatur:: Bis zu +130°C / +266°F Druck:: 16 barg / 232 psig
OPTIWAVE 1400

OPTIWAVE 1400

FMCW Radar-Füllstandmessgerät für Flüssigkeiten in der Wasser- und Abwasserindustrie * Kontinuierliche, berührungslose Füllstandmessung in Tanks, Pumpstationen, offenen Gerinnen etc. * Robuste Edelstahlausführung, wasserdicht (IP68) * 24 GHz-Radar, PP-Tropfenantenne * Messbereich: 0…20 m Der OPTIWAVE 1400 ist ein 2-Leiter 24 GHz FMCW Radar-Füllstandmessgerät für Flüssigkeiten in Wasser- und Abwasseranwendungen. Es eignet sich für die kontinuierliche, berührungslose Füllstandmessung von Quell-, See- oder Meerwasser sowie gleichermaßen für Regen- und Abwasser, Schlamm und andere Flüssigkeiten in Lageranwendungen. Das Messgerät besitzt ein robustes Edelstahlgehäuse und ist mit Schutzklasse IP68 für den Einsatz in überflutungsgefährdeten Gebieten im Freien ausgelegt. Die bewährte Tropfenantenne aus Polypropylen (PP) verfügt über den schmalsten Abstrahlwinkel im Markt (8°) und gewährleistet eine genaue und verlässliche Füllstandmessung von Flüssigkeiten – trotz Kondensation, bewegten Produktoberflächen oder Schaum. Diese Eigenschaften machen das Gerät zu einer kostengünstigen und zugleich leistungsstärkeren Alternative zu Pulsradar- oder ultraschallbasierten Füllstandmessgeräten. Das Radar-Füllstandmessgerät bietet Gewinde- und Niederdruckflansch-Anschlüsse sowie weiteres Zubehör. Produkthighlights * 2-Leiter, stromschleifengespeist, mit HART®7 * FMCW Technologie für höhere Auflösung, genau wie bei der 80 GHz-Gerätegeneration * Bewährte PP-Tropfenantenne, unempfindlich gegenüber Kondensation oder Ablagerungen * Schmaler Abstrahlwinkel (8°) für scharfe Fokussierung auf den Messstoff * ± 2 mm Genauigkeit * Robuste Edelstahlausführung * Wartungsfreies Konzept
Messzwischenplatten

Messzwischenplatten

Messzwischenplatten in verschiedenen Baugrößen verschiedene Messzwischenplatten (NG06, NG10, NG16), auch mit unterschiedlichen Anschlussgrößen lieferbar
OPTIWAVE 6500 C

OPTIWAVE 6500 C

Füllstandmessgerät / FMCW-Radar / für Pulver und staubige Atmosphären FMCW Radar-Füllstandmessgerät für Pulver und staubige Atmosphären * Kontinuierliche, berührungslose Füllstandmessung in großen und schmalen Silos, Schüttgutbehältern oder Containern * 80 GHz-Radar, Linsenantenne * Messbereich: 0…100 m * -50…+150°C; -1…40 barg Der OPTIWAVE 6500 ist ein 2-Leiter 80 GHz FMCW Radar-Füllstandmessgerät für anspruchsvolle Anwendungen mit Pulvern in sehr staubigen Atmosphären. Dank des kleinen Abstrahlwinkels eignet sich dieses Radargerät insbesondere für die kontinuierliche, berührungslose Füllstandmessung in großen und schmalen Silos, Schüttgutbehältern oder Pufferbehältern bis 100 m. Dank der großen Signaldynamik des FMCW-Radars eignet sich das Füllstandmessgerät hervorragend für schwach reflektierende Messstoffe, Staub, ungleichmäßige Oberflächen oder Tanks mit Einbauten. Da es mit einer frontbündigen PEEK-Linsenantenne ausgestattet ist, ragt die Antenne nicht in den Tank hinein. Der OPTIWAVE 6500 liefert genaue und zuverlässige Messungen bei Prozessbedingungen mit Temperaturen bis +150°C und Drücken bis 40 barg. Er besitzt Flansch- oder Gewindeanschlüsse sowie eine optionale 112 mm Antennenverlängerung für die DN40 Antenne. Darüber hinaus ist das Gerät auch mit Ex-Zulassungen verfügbar. Das Füllstandmessgerät ist mit HART®7-Kommunikation ausgestattet. Produkthighlights * 2-Leiter, stromschleifengespeist, mit HART®7 * Extrem hohe Dynamik für genaue Messungen trotz staubiger Atmosphären oder schwach reflektierender Messstoffe * Leerspektrum-Funktion eliminiert Störreflexionen von Tankeinbauten Flüssigkeit:: Flüssigkeit Technologie:: FMCW-Radar Anzeige:: digital Messbereich:: 0…100 m / 328 ft Temperatur:: Bis zu +150°C / 302°F Druck:: 40 barg / 580 psig
Reinwasser-Leitfähigkeitssensor OPTISENS COND 1200

Reinwasser-Leitfähigkeitssensor OPTISENS COND 1200

Konduktiver Leitfähigkeitssensor für Wasser, Abwasser, Prozesswasser oder Reinwasser * Für den Einsatz mit Analysetransmitter * Prozessanschluss: G1⁄2, G3⁄4, G1, 3⁄4 NPT (AG) * 0,05 μS/cm…20 mS/cm; max. +135°C * Mit zwei Edelstahl-, Titan- oder Graphitelektroden und Pt100 zur Temperaturkompensation Der OPTISENS COND 1200 ist ein Sensor für die konduktive Leitfähigkeitsmessung in allen Standardanwendungen. Dank seiner zwei Edelstahlelektroden eignet er sich besonders gut für wenig verschmutzte, nichtkorrosive Medien wie Reinwasser, Dampf und Kühlwasser. Der Sensor ist auch als industrielle Sondervariante mit Graphit- oder Titanelektroden für die Medientrennung, Trinkwasseraufbereitung und Abwasserkontrolle/-aufbereitung verfügbar. Der OPTISENS COND 1200 eignet sich für die Verwendung mit dem MAC 100 oder jedem anderen passenden Analysetransmitter. Produkthighlights * Großer dynamischer Messbereich * Großer Zellkonstantenbereich * Spektrum an Elektrodenwerkstoffen * Robustes Sensordesign, lange Lebensdauer * Geringe Wartungskosten und lange Lebensdauer * Verfügbar mit 4-poligem Winkelstecker (Hirschmann) oder Festkabel bis 10 m / 33 ft * Mit robustem PVDF-Sensorkörper * Mit integriertem Temperaturfühler * Für den Anschluss an den MAC 100 oder jeden anderen geeigneten Analysetransmitter * Verschiedene Armaturen für einfachen Einbau und eine zuverlässige Handhabung Typische Applikationen Wasserindustrie * Überwachung der Wasserqualität * Prozesssteuerung in der Wasseraufbereitung * Filterüberwachung Chemische und andere Prozessindustrien * Qualitätskontrolle * Prozesssteuerung in der Wasseraufbereitung * Filterüberwachung KROHNE Messtechnik OPTISENS COND 1200 Produkt:: Reinwasser
SUMMIT 8800

SUMMIT 8800

Mengenumwerter für die eichpflichtige Messung * Kostengünstige Lösung dank modularem Design von Hardware und Software * Vollfarbiger grafischer Touchscreen für höchste Prozesstransparenz * Einfacher Bedienerzugriff für zeitsparende Wartung * Längeres Nachkalibrierintervall dank automatischer Leistungsüberwachung Der SUMMIT 8800 ist ein digitaler Mengenumwerter für die eichpflichtige Messung. Der moderne vollfarbige grafische Touchscreen bietet die grafische Darstellung des Messprozesses mit Echtzeitanzeige aller Messwerte. Bis zu 5 verschiedenen Messgerättypen lassen sich in einem Mengenumwerter kombinieren, wobei die Messungen im eichpflichtigen Verkehr innerhalb 0,25 s erfolgen. Der SUMMIT 8800 kommuniziert über digitale, analoge, serielle und Ethernet-Schnittstellen, um die Mess- und Diagnosewerte von den Feld-Messumformern und Analysegeräten zu erhalten. Alle berechneten Werte (Dichten, Durchflüsse, Summen etc.) stehen im Modbus-Format zur Verfügung, das von jedem SPS-, SCADA-, Verrechnungssystem etc. gelesen werden kann. Produkthighlights * Entspricht allen wichtigsten internationalen Normen, einschließlich OIML, ISO, API, AGA, GOST * Komplett digital; kein Genauigkeitsverlust aufgrund von Analog/Digital-Umwandlungen * Erweiterte Diagnose mit Aufzeichnung von voreingestellten Messparametern * Modbus-Mapping und Systemkompatibilität (Prozessleitsysteme, SPS, Supervisory, SCADA, HMI) * Erweiterte Systemintegration einschließlich eReporting-Push-Technologie, Web-Schnittstelle und Fernüberwachung * Sehr kurze Zykluszeit: bis 0,25 s * Redundanter Betrieb in Wechselbetrieb-Konfiguration